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Abstract. Growing numbers of advanced malware-based attacks
against governments and corporations, for political, financial and scien-
tific gains, have taken security breaches to the next level. In response
to such attacks, both academia and industry have investigated tech-
niques to model and reconstruct these attacks and to defend against
them. While such efforts have been all useful in mitigating the effects of
modern attacks, automated malware code reuse inspection and campaign
attribution have received less attention.
In this paper, we present an automated system, called SCRUTINIZER,
to identify code reuse in malware via a novel machine learning-based en-
coding mechanism at the function-level. By creating a large knowledge
base of previously observed and tagged malware campaigns, we can com-
pare unknown samples against this knowledge base and determine how
much overlap exists. SCRUTINIZER leverages an unsupervised learn-
ing approach to filter out irrelevant functions before code reuse detection.
It provides two valuable capabilities. First, it identifies ties between an
unknown sample and those malware specimens that are known to be
used by a specific campaign. Second, it inspects if specific tools or func-
tionalities are used by a campaign. Using SCRUTINIZER, we were able
to identify 12 samples that were previously unknown to us and that we
were able to correctly assign to well-known APT campaigns.

Keywords: Malware Analysis · Code Reuse Detection.

1 Introduction

Recent reports show that advanced malware-based breaches are increasing in
volume and impact [68]. Companies are frequently becoming the targets of fi-
nancially and politically-motivated attackers. For example, very recently, sev-
eral biotech research firms experienced crippling targeted attacks during the
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COVID19 pandemic [54,14]. Despite more attention on advanced attacks re-
cently [40,28,25,30,48,27] and their significant effects [3], there has been little
investigation into how to automatically detect and identify specific advanced
malware campaigns at scale when looking at large volumes of incoming malware
samples.

The security community has extensively investigated how unknown attacks
can be detected based on code similarity. Previous work studied binary and
source code similarity testing detection [71,18,63], clone detection [42,4,5,35,37]
and (fuzzy) hashing [41,67,38,58]. Very recently, the community has also begun
to explore the use of modern machine learning approaches to detect more so-
phisticated malware attacks such as APTs [27]. While these efforts have been
useful in identifying some forms of attacks, the challenge of detecting more in-
teresting samples (e.g., APTs) in large volumes of incoming malware data is
still an open challenge. Existing approaches are inadequate for characterizing
malicious code reuse and campaign attribution in modern malware attacks for
two primary reasons: First, relevant data about advanced (e.g., APT) samples
is scarce. Hence, in real-world deployments, this limitation makes common ma-
chine learning techniques such as supervised machine learning significantly less
effective in finding specific types of malware. Second, current static code similar-
ity testing approaches are ineffective in locating previously unknown threats due
to the intense use of evasive techniques by malware authors, rendering almost
all of the existing static analysis approaches ineffective in practice (and hence,
making dynamic analysis often necessary).

The core insight behind of our work is that almost all malware-based attacks
(including advanced, targeted attacks such as APTs) follow practically proven
patterns to deliver the actual malicious payload. Malware is rarely written from
scratch and often depends on an existing code base or on specific, unique code
bases (e.g., Mimikatz). Thus, if we accurately create a knowledge base of a large
corpus of known, malicious source code snippets (some of them being known
APT activity) observed in modern malware attacks, we can then compare un-
known samples against this dataset and identify code similarities.

One major challenge when analyzing malware samples is the lack of source
code. Hence, the malware binary needs to be analyzed and understood. While bi-
nary comparisons between malware samples are possible, in practice, even small
differences between the files can lead to major reported differences even though
the samples might belong to the same campaign. To be able to build an effective,
accurate code similarity detection approach that works on real-world malware
binaries, in the first step, we need to use dynamic analysis techniques that can
execute the code and then create process snapshots of the running sample. In
the second step, we need to be able to reconstruct the corresponding high-level
source code from the memory dumps, and automatically locate segments of the
code that are highly likely used in the malicious operation. This second step is
more challenging, and has not been addressed to date.

In this work, we partnered with a well-known anti-malware company to run
and extract run-time memory snapshots from 12,450 real-world malware sam-
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ples. We then built tools to analyze the process snapshots and to reconstruct
the source code of the actual malicious payloads, and retrieve the corresponding
function code snippets. Armed with a large set of decompiled code samples from
a wide-range of malware specimens, in this paper, we propose a novel encod-
ing mechanism to perform automated code similarity analysis. We developed a
python-based framework to post-process run-time memory snapshots, and ex-
tract source code in order to be able to translate an arbitrary malware sample
into a set of encoded functions that are representative of the functionality of the
code. To achieve this, we take advantage of advances from the field of document
classification by treating each function in the decompiled code as a sequence
of words. We incorporate Siamese Neural Networks (SNNs) [9] to vectorize the
functions and build the encoding model to be able to perform similarity testing.
We applied our proposed similarity testing approach on 44,015 recent benign and
malicious samples we received from the anti-malware company. The knowledge
base we generated contains 1,734,992 clusters of extracted functions that were
determined to be similar.

The automated code similarity comparison system that we built, called
SCRUTINIZER, was used to analyze 3,000 random samples submitted to the
anti-malware company in the summer of 2020. We could automatically identify
and assign unknown samples to already known APT campaigns using function-
level similarities. Evaluating advanced malware (e.g., APT) in the real-world is
a great challenge because of the lack of ground truth. However, we were able
to manually verify our detection results for 12 different, unknown samples by
comparing our findings with those of other security vendors. Also, on average,
SCRUTINIZER was able to discard on average 56% of the code of the unknown
samples because it was determined to be uninteresting. Hence, SCRUTINIZER
also proved to be useful during binary analysis as a filtering mechanism.

Contributions. In summary, this paper makes the following main contribu-
tions:

– We propose a machine-learning-based system, called SCRUTINIZER, to
detect code reuse in malware samples. SCRUTINIZER relies on an unsu-
pervised learning algorithm to filter out less relevant functions to malicious
code samples.

– To our knowledge, we are the first to extract and use high-level source code
from adversarial malware samples for performing automated malware cam-
paign attribution. We were able to identify 12 samples that were previously
unknown to us and that we were able to correctly assign to well-known APT
campaigns.

– We have created a large knowledge base which contains more than 1.7M
clusters of function encodings obtained from a large-scale analysis of 44K
real-world advanced malware and benign samples. Both filtering and code
reuse detection rely on this knowledge base to discard noisy functions and
to identify code reuse.

– We release our code, our findings and other relevant information to foster
the research in this area [64].
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2 Approach

In this section, we describe our approach for performing automated code analy-
sis. Building of a solution that serves this goal requires extracting the unpacked
version of a given payload for decompilation, developing an efficient encoding
mechanism on decompiled code for similarity testing, and constructing an un-
supervised model to run code analysis on an unknown sample. The overall ar-
chitecture of the proposed system for both the modeling and testing phases is
shown in Fig. 1. In this section, we describe SCRUTINIZER ’s architecture in
detail and our approach to implement each part.

Fig. 1: Overall architecture of the proposed system and steps of modeling (i.e,
solid arrows) and testing (i.e., dashed arrows) phases.

2.1 Decompilation

The first step in our pipeline involves binary decompilation to generate the un-
packed version of the given payload. To this end, our approach relies on existing
dynamic analysis techniques where the given binary is executed in an advanced
sandbox developed by Lastline [39], to load and unpack the payload and record
the run-time behavior. The sandbox acts as a universal unpacker by running the
sample inside a guest operating system.

The dynamic analysis engine produces multiple process dumps (or snapshots)
at critical points during different stages of the analysis. An analysis stage is
known to be critical if one of these conditions are met: 1) when sensitive APIs are
executed, causing a new process creation (e.g., CreateProcess), a new file creation
(e.g., CreateFile) or privilege escalation (e.g., AdjustTokenPrivileges), 2) when
execution happens outside of the original PE image, and 3) when the original PE
image changes. The process dumps contain run-time information about loaded
code and memory blocks of the binary under analysis. These snapshots, taken
at different stages of the analysis, are then saved under a single analysis subject
when the engine detects a suspicious behavior (e.g., a sensitive API call from
an untrusted memory region). We parse these snapshots and run a post-process
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analysis to reconstruct the program’s source code in C/C++. To this end, we
developed a plugin for Ghidra [24] to map the memory regions from snapshots
into Ghidra’s virtual memory space and decompile the code found in memory.

2.2 Func2vec Encoding

The second step in the analysis pipeline is designed to perform code similar-
ity testing across malicious payloads. Our analysis on existing similarity testing
techniques on source code [71,18,63,42,4,5,35,37] revealed that these approaches
are too sparse to such an adversarial landscape where malicious operators have
significant freedom to utilize evasive techniques and bypass contemporary simi-
larity testing mechanisms.

Our function to vector encoding mechanism relies on Siamese neural net-
works [9]. Prior research and our empirical preliminary experiments with mal-
ware have shown that SSNs are quite effective in a wide range of tasks, most
specifically in similarity and metric learning [57,56] and hashing [44]. SSNs con-
sist of two or more sub-network components with identical architectures. The
most common type of Siamese networks is the one with two similar sub-networks
which takes two inputs simultaneously and computes two representation vectors
(encodings) for inputs. It then leverages a distance metric to estimate the sim-
ilarity between the two vectors [9]. Each sub-network component (#2 in Fig.
2) is a Long Short-Term Memory (LSTM) [29], an artificial Recurrent Neural
Network (RNN) architecture, that has shown to be efficient on a variety of tasks
such as anomaly detection [21] and forecasting time series data [26]. LSTMs are
also capable of learning long-term dependencies which is not quite possible in
other types of networks due to the vanishing gradient problem [7]. To vectorize
functions and feed them as inputs to the Siamese network, we rely on Abstract
Syntax Trees (ASTs). In particular, we map each function to a flattened version
of its AST node types (#1 in Fig. 2). Finally, to compare the final hidden states
of two LSTM layers, we leverage the Manhattan distance metric (#5 in Fig. 2),
which turns our Siamese network to be of a MaLSTM [52] variant.

To find similar functions across decompiled samples, we start by extracting
n-grams of each function vector (i.e., a sequence of AST nodes). We then hash
all extracted functions by applying the Locality Sensitive Hashing (LSH) algo-
rithm [33] to these n-grams. LSH can map similar functions to the same hash
code which is referred to as a bucket. At the end of the analysis, buckets that
contain only a single function are incorporated as dissimilar functions. We then
select all permutations of these functions as dissimilar pairs. We have observed
that relying on LSH alone normally introduces false positives, especially in cases
where functions are extracted from decompiled codes and they have major dif-
ferences. For this reason, we leverage this hashing mechanism along with two
verification techniques to discard false positives and come up with an ML-based
hashing mechanism.
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Fig. 2: Overall architecture of Siamese network.

2.3 Encoding Clustering

The primary goal of our analysis pipeline is to provide insights on a previously
unknown binary. To this end, we begin by incorporating a trained Siamese net-
work (see Section 2.2) to encode functions, and then, leverage an unsupervised
learning approach to cluster similar functions from different code samples to-
gether. The generated clusters form our knowledge base to locate code reuse in
a previously unknown sample and reason about the potential behavior of the
sample. That is, the sample is converted to a set of encoded functions which are
compared against clusters of hundreds of thousands of encoded functions that
correspond to previously detected campaigns or malware families.

For each cluster, we generate a unique dictionary tag by maintaining the
occurrence frequency of each function observed in different decompiled code
samples. The tag of each cluster reveals the usage or popularity of the clustered
functions in malware samples used by one or more campaigns. We have also tags
for functions that were used mainly for benign code samples.

Malicious and benign binaries share significant volumes of code samples based
on our observations. For instance, statically-linked standard library functions,
global variable initialization code, and import resolution code are significantly
common in both types. Therefore, a function cannot be simply labeled as ma-
licious if it is observed in malware. Benign code samples could be identified as
malicious only because they share several lines of code with malicious binaries.
Thus, in this work, we rely on clusters of function encodings and automatically
tag new functions as noisy if they are assigned to a mixed cluster that contains
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functions from both malicious and benign samples. We then discard all these
noisy functions before doing any further analysis.

To provide an example of how SCRUTINIZER performs automated code
reuse detection on an unknown sample, we extracted 534 functions with 45,902
LoC after running a sample in the sandbox and reconstructing its source code.
The system then generated the corresponding encoded functions using the
func2vec method for similarity testing via a trained SSN and a knowledge base
of approximately 1.7M function encodings from 44K benign and malicious pay-
loads. The system discarded 434 (81 %) functions, which was equal to 36,957
LoC, and identified 100 (29 %) functions in previously seen malware binaries,
most of which were assigned to clusters with Turla tag – A Russian-based threat
group that has infected victims in over 45 countries. After further investigation,
we discovered that this sample was a Trojan package that was suspected by com-
puter security researchers and Western intelligence officers to be the product of
a Russian government agency of the same name.

3 Evaluation

In this section, we evaluate our system and discuss the results. In particular, we
will explain our experimental setting, the encoding mechanism used to cluster
similar functions. We will also provide details on the real-world deployment of
SCRUTINIZER and our results in malware campaign analysis.

3.1 Experimental Setting and Dataset

SCRUTINIZER is implemented in Python. We have leveraged a library for par-
allel computing, called Dask [15], to improve the execution speed of our scripts.
The experiments are conducted on a 2.2 GHz Intel Xeon Ubuntu server with
20 CPUs and 276 GB of RAM. We have used two distinct and non-overlapping
datasets for the modeling and testing phases (see Table 1). To create a model, we
have relied on 31,475 benign and 12,540 malware samples. Benign samples are
different versions of Windows DLL files crawled from a website [17] in around one
week. Table 1 shows the average size for each type of binary, and also, the average
Lines of Code (LoC) and cyclomatic complexity [45] of their decompiled codes.
Malicious samples (shown in Fig. 3) are both regular malware (12,253 samples)
and those that have been used in advanced (i.e., APT) attacks (287 samples)
according to the APT notes and threat intelligence of MITRE ATT&CK [50],
FireEye [22], Kaspersky [36] and ThreatMiner [66] 4. To test our system, we
have increased the malware-to-benign ratio and have evaluated its performance
on unknown samples (See Section 3.4).

4 We plan to release a labeled dataset of malware binaries that have been used by
different APT campaigns that we have access to.
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Fig. 3: Distributions of malware in our dataset.

Table 1: Overview of the dataset used in this work. The size (in MB) and
cyclomatic complexity are given on average per sample. Avg LOC is the average
lines of code per sample and per function.

Phase Data Type #Samples Size Avg LOC Complexity

Modeling
Malware [39] 12,540 0.55 106.21 11.05
Benign [17] 31,475 0.31 35.73 5.80

Total 44,015

Testing
Malware [39] 500 0.38 95.47 10.21
Benign [39] 2,500 0.29 33.25 5.76

Total 3,000

3.2 Function Encoding

This section particularly deals with answering two important questions: 1) How is
a model is trained to embed functions?, and 2) How can the system leverage this
encoding method to perform similarity testing? To perform training experiments,
we first decompile each binary using a Ghidra5 post-processing script [64] as
discussed in Section 2.1. We then leverage Clang6 to map each function to a
flattened AST vector. Our choice of Clang is motivated by the fact that it is
less sensitive to code artifacts commonly produced by decompilation tools. To
make our AST construction more precise, we replace each function or API call
(CALL EXPR node in AST) in the vector by the exact name of a function or API
call. This allows us to differentiate between calls to functions authored by the
coders and APIs.

We then train the MaLSTM network to identify pairs of similar and dissimilar
functions by mapping their AST vectors into an embedding space. We relied on
the MinHashing implementation of Locality Sensitive Hashing (LSH) [33], and
hashed functions based on the n-grams of their AST vectors. The parameters of
fuzzy hashing were chosen very loosely so that we could come up with as many
similar functions as possible with different lengths. We followed two major steps

5 Version 9.1.2 with SHA-256: ebe3fa...ecac61
6 Version 10.0.0: https://releases.llvm.org/10.0.0/tools/clang

https://releases.llvm.org/10.0.0/tools/clang
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to discarded functions that were mistakenly identified as similar (i.e., false posi-
tives). First, we leveraged a post-processing script [64] to automatically discard
similar functions that do not share a common prototype (i.e., function name and
parameters) and output. Second, we hashed a subset of functions several times
to manually inspect and verify the integrity of results (i.e., created set of similar
and dissimilar functions). In total, we collected 1,105,000 pairs for similar and
dissimilar functions from both malicious and benign samples.

The accuracy of the trained network is evaluated via non-stratified 5-fold
cross-validation. In particular, the dataset was first split into 5 folds of approx-
imately equal size. Next, in each of the 5 iterations, we trained our system
on 4 folds, and then, evaluated it on the remaining fold. The average, median
and standard deviation of prediction errors (shown in Table 2) are 0.082, 0.097,
0.056, and 0.061 for malware and benign function vectors respectively that show
our system works well. Moreover, we have randomly selected 1,000 function en-
codings and have manually checked the integrity of the results. Our manual
inspection confirms the integrity and accuracy of the encoding mechanism and
that similar AST nodes are properly placed close to each other in the latent
space.

Table 2: Prediction error statistics after 5-fold cross-validation using only mal-
ware, only benign vectors, and a combination of both.

Type Mean Standard Deviation Median

Malware 0.082 0.097 0.031
Benign 0.056 0.061 0.004
Both 0.058 0.071 0.017

We also leveraged cross-validation to confirm the optimal value of embed-
ding dimension and to tune the network’s hyper-parameters, and in particular,
the number of hidden layers. Due to time limit and the number of samples, we
evaluated the performance of our system with 5 different dimensions and 3 net-
works with different numbers of hidden layers. Our results confirmed that an
embedding size of 128 yields to higher F1 scores for all three settings.

3.3 Cluster Analysis

Equipped with a precise function-level encoding mechanism and similarity test-
ing, we now hash each function to an encoding of a particular dimension (i.e.,
Func2vec encoding). To achieve this goal, we process all samples in our dataset
and extract their functions and their AST vectors initially. We then generate
the encodings of the functions using one of the sub-networks (i.e., LSTM) of
our Siamese network (i.e., MaLSTM), cluster them into groups, and use these
clusters to discard noisy functions and keep the ones that had been seen mainly
in malware samples.

We leveraged the HDBSCAN clustering algorithm [13,46] to group function
encodings in different clusters due to its superior performance over other algo-
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rithms for big data [59]. This algorithm is a variant of a popular density-based
clustering algorithm, known as DBSCAN [20]. It requires no parameter tuning,
runs faster and consumes less memory compared to the regular DBSCAN al-
gorithm due to the way it has been implemented. To speed up the clustering
process, we have reduced the dimension of our function encodings from 128 to
8 using Principal Component Analysis (PCA). Also, we experimentally tested
and approved that reducing the dimension of the data would not significantly
impact the clustering result, and most specifically, the number of clusters.

Our system could find a total number of 1,734,992 clusters based on the above
parameters and clustering algorithm. Each cluster contains functions whose en-
codings resemble each other. From this number, 91% of clusters are completely
benign, 3.2% are completely malicious, and 5.88% of clusters are mixed. The
biggest cluster in our dataset has 14,406 similar function encodings, while the
average size of clusters is around 5.

After clustering similar functions together, we generate a dictionary tag for
each cluster based on the occurrence frequency of the observed functions in
decompiled code samples. The occurrence frequency of a function is shown in Eq.
1. We maintain the occurrence frequency of each function during the modeling
phase, and eventually, generate a dictionary tag of all the possible use cases of
the function. For instance, the function that we described in Section 2.3 was
automatically assigned to a cluster that had the following cluster tag:

tag = [benign = 12.5, Turla = 87.5] (1)

The cluster tags created during clustering are used later for filtering and code
reuse detection. To show the performance of SCRUTINIZER in these two tasks,
we have applied it on real-world data. Specifically, we first show the efficiency of
the filtering process, and then, we discuss how it can improve the accuracy of a
malware detection system. Finally, we show how the proposed system could be
leveraged to identify code reuse among malware samples that have been used by
APT campaigns.

3.4 Real-World Deployment

We received 3,000 previously unknown samples collected by a well-known anti-
malware company in the summer of 2020 to test the effectiveness of SCRUTI-
NIZER. Note that based on our empirical analysis, each sample contained on
average of 485 functions. This makes code similarity testing a significantly expen-
sive process. More importantly, malware and benign samples share large volumes
of standard code. This overlap could potentially introduce many false positives
in malware detectors. Thus, we first filter noisy functions that are common in
both malware and benign samples, and then, rely on the remaining functions
of each sample to perform similarity analysis. In the following, we provide more
details on each step as well as the summary of our experiments.
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Filtering. The filtering process is applied by relying on cluster tags that are
created during the clustering process (see Section 3.3). After the cluster assign-
ment, the system discards functions if the cluster tag indicates that all or the
majority of the functions (enforced by δ) in the assigned cluster are observed in
the benign samples. It is worth mentioning that δ is customizable. Therefore,
a higher value would only discard functions that were seen in benign clusters.
We set the δ value to 0.5 to discard functions because this threshold value left
us with more functions in malicious clusters on average. The summary of the
filtering experiment is quite promising (See Fig. 4). The analysis shows that
the samples in the previously unknown dataset have a median of 199 functions
where the system was able to filter a median of 126 functions (63%) from those
samples. This was equal to removing approximately 11,476 (56%) lines of code
from the given code.

Fig. 4: The result of the filtering phase on the unknown sample set. Our analysis
suggests that the filtering mechanism works well in practice by filtering a median
of 126 functions of the input samples.

The filtering process had a significant impact on the performance of our sys-
tem. To confirm this, we deployed SCRUTINIZER to detect unknown malware.
Here, the system was tuned to label any incoming unknown sample as malware
when malicious functions outnumbered benign ones, and the similarity of the
sample to any previously known samples was more than a threshold, ranging
from 0 to 100%. The experimental results show that the true positive rate in-
creased from 82% to 92% after filtering the functions that were common in both
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malware and benign samples. At the same time, the false positive rate decreased
from 10% to around 1.2%. In other words, as shown in Fig. 5, the Area Under
the Curve (AUC) score, ranging from 0 (worst classifier) to 1 (perfect classifier),
improved from 0.88 to 0.95 when the filtering was applied. In Section 3.4, we ex-
plain how the output of this section helped us to conduct the malware similarity
analysis on this dataset.

Fig. 5: Classification performance before and after filtering process. The results
suggest that the applied filtering mechanism improves the TPR by 10% and
decreases the FPR by 8.8%.

Code Reuse Analysis on APT Campaigns. One of our motivations behind
developing SCRUTINIZER was to enhance contemporary techniques to per-
form malware similarity analysis on unknown samples. In this experiment, we
tested SCRUTINIZER by using all the 3,000 unknown samples we discussed
in Section 3.4. We followed the steps we described in Section 2 to perform this
experiment. In this Section, we discuss two case studies: 1) a scenario where
chunks of codes were identified by our system to be shared by malware samples
that had been used by one single APT campaign, and 2) a scenario were code
was shared and re-used by multiple APT campaigns.
Intra-Campaign Code Reuse Analysis. In the first case study, we discuss
how SCRUTINIZER can incorporate function-level similarity testing and au-
tomatically reason about code reuse in a given sample. In our analysis, we found
a case7 which was identified to have function-level similarities with malware
specimens attributed to OceanLotus Vietnamese APT campaign.

The very initial malicious operation of this cyber-theft and espionage APT
campaign dates back to 2014, where a European corporation was compro-
mised [55]. Since then, this campaign has been continuously active with the

7 MD5: fcd7227891271a65b729a27de962c0cb
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maximum number of operations in 2018. The most recent and known activity of
this campaign has been focused on targeting the Wuhan government and Chi-
nese ministry of emergency management to steal COVID-19 related findings via
sending phishing emails [54].

Our automated system found 377 different functions from this sample with
18,125 lines of code. From this amount, SCRUTINIZER could discard 247
noisy functions which were up to 8,720 lines of code - i.e., around 48% of the
original decompiled code. Next, the remaining functions were assigned to 109
different clusters, where in the best case, 4 functions were grouped in one single
cluster. Our results show that this sample contains 105 different functions similar
to those functions that were seen in malicious specimens of the OceanLotus
APT campaign that was observed in the modeling phase. We cross-checked these
results with major anti-malware service providers. The sample was recognized
as Ocean Buffalo by CrowdStrike [53], or APT32 by FireEye [22].

Inter-Campaign Code Reuse Analysis. In the second case study, we iden-
tified a sample8 that had function-level similarities with malware specimens at-
tributed to the Barium and Turla APT campaigns – two well-known Chinese and
Russian state-sponsored campaigns that have cyber-espionage and information
theft motives [65].

The Barium campaign commonly begins its attacks by gathering informa-
tion of potential victims through social engineering techniques, especially via
online social media. Multimedia and online game companies were attacked more
frequently by this campaign. The Turla campaign, also known as Waterbug by
Symantec [70], has targeted a wider range of users and sectors in over 45 different
countries. The threat intelligence report also shows that this campaign is one of
the most sophisticated APT campaigns that relies on a wide range of tools to
deliver its attacks [65].

Our system found 971 functions from this sample with 74,309 lines of code
overall. Also, it discarded 767 noisy functions which corresponded to 59,976 lines
of code (≈ 81% of the original decompiled code). Next, the remaining 204 func-
tions were assigned to 163 different clusters. Experimental results show that
this sample has 22 functions that are syntactically similar to those of malware
samples attributed to both the Barium and Turla campaigns. After further in-
vestigation, we discovered that this sample contains an open-source hacking code
known as Mimikatz [49] that has not only been used by these two campaigns,
but also by a number of other advanced malware campaigns [65].

Summary. Table 3 shows the list of all binaries that our system reported to
have similarities with specimens that were known from each advanced malware
(i.e., APT) campaign that existed in our knowledge base. We could verify the
veracity of our results by consulting online AV scanners and threat intelligence
reports. Some of these binary hashes were already reported as IoCs of known
APT campaigns. Others were cross-checked by retrieving the name of the mali-
cious operation or malware family and consulting the recent APT threat ency-

8 MD5: 276c28759d06e09a28524fffc2812580
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clopedia [65]. The results included in Table 3 confirm that our tool can reason
about code reuse in unknown samples by relying on function-level similarities.

Specifically, a similarity score presented for each sample by our tool shows
how many functions an unknown sample has in common with already known
malware instances. Moreover, this score represents how frequently a function is
observed in each campaign. A low similarity score for an unknown malicious bi-
nary shows that it has less shared functions with known malware specimens of a
specific campaign. On the other hand, a high similarity score indicates that the
unknown binary has more functions in common with known malware samples
that have been used by a malware campaign. Thus, the proposed approach to
perform similarity testing can be used in different ways depending on the goal
of the analysis. That is, if a human analyst aims at locating new and emerging
trends in malware samples, a lower score is more preferable. If, however, the an-
alyst is looking for code reuse in unknown samples, a higher score is an indicator
of more overlaps.

Table 3: Campaign analysis result for a subset of samples that we could man-
ually verify using online threat reports and AV scanners.
MD5 #Functions Discarded Functions (%) Assigned Campaign: similarity (%) Real Campaign

22d01fa2725ad7a83948f399144563f9 763 81.9 Turla: 58.0 Turla [69]
0d67422ba42d4a548e807b0298e372c7 225 55.1 GazaCybergang: 73.9 GazaCybergang [51]
655f56f880655198962ca8dd746431e8 188 66.5 GazaCybergang: 64.0 GazaCybergang [51]
ff8d92dfbcda572ef97c142017eec658 144 70.1 Barium: 38.5 Barium [69,65]
c11dd805de683822bf4922aecb9bfef5 220 65.9 Barium: 38.4 Barium [69,65]
aae531a922d9cca9ddca3d98be09f9df 558 61.6 OilRig: 43.7 OilRig [69,65]
6a7bff614a1c2fd2901a5bd1d878be59 588 59.0 OilRig: 40.6 OilRig [69,65]
a921aa35deedf09fabee767824fd8f7e 44 68.2 GazaCybergang: 41.5 GazaCybergang [69,65]
0e441602449856e57d1105496023f458 73 61.6 Turla: 35.3 Turla [69]
7f05d410dc0d1b0e7a3fcc6cdda7a2ff 220 65.9 Barium: 38.4 Barium [69,65]
557ff68798c71652db8a85596a4bab72 144 70.1 Barium: 38.5 Barium [69,65]
b0877494d36fab1f9f4219c3defbfb19 144 70.1 Barium: 38.5 Barium [69,65]

4 Discussion

In this section, we discuss the accuracy, robustness and potential deployment
costs of our approach.
Accuracy. The very first step of our pipeline involves mapping memory regions
from snapshots taken during dynamic analysis into Ghidra’s virtual memory
space and use this tool to decompile the code found in memory. Thus, any is-
sues that may happen during this step could impact the accuracy of our tool. In
addition, like any other machine learning approach, the accuracy of SCRUTI-
NIZER depends on the quantity of the data that is used to build the detection
models. In particular, a prerequisite in training a Siamese network is the avail-
ability of a large number of function pairs from different binaries. This process
requires extracting the corresponding syntactical features after constructing the
decompiled version of the binary. However, collecting a large volume of relevant
data is a non-trivial task since binary decompilation is an error-prone process on
malware binaries, and it could contribute to lower accuracy. Furthermore, our
experiments show that the AST construction method we used in this project can
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also produce false positives. In particular, we empirically found that in specific
cases, ASTs produced by Clang showed similarities that were false positives.
As a result, there might be noise in the training data and this might affect
the function encoding process. To cope with this problem, we leveraged a post-
processing mechanism to carefully inspect the result of the encoding process,
and we performed hyper-parameter tunings to prefilter false positives. We note
that in practice, the post-processing operation needs to be constantly visited
and updated to keep the false positive rate in a manageable range.

Analysis Costs and Potential Bottlenecks. Our analysis of the performance
overhead revealed three sources of potential bottlenecks in the process. Recall
that our analysis relies on dynamic analysis which is inherently an expensive
operation in code analysis. Common evasion techniques could even increase this
cost by inserting stalling code or logic bombs and make the dynamic analysis
significantly less effective. The analysis framework we used in this project al-
lowed us to record the actual malicious behavior even with the presence of logic
and time bombs. However, this is a best-effort approach, and requires constant
improvement to maintain effectiveness which outside of the scope of this paper.
The second expensive task in this process is related to constructing the training
data for the Siamese network. This phase requires performing pair-wise similar-
ity testing across all the decompiled code instances. The similarity testing on all
functions in 1,000 decompiled code samples required around 4 hours. However,
note that this process needs to be performed once in order to build the training
dataset, and subsequent incremental updates would not introduce signification
overhead. The third potential computational cost is related to the training pro-
cess where several parameters such as hyper-parameters and epochs need to be
considered for constructing the model. In this work, each of the sub-networks
were trained in 5 epochs in parallel, and the training process on around 1M pairs
of functions took approximately 36 minutes. We observed that the processing
time can dramatically increase when we incorporated larger pairs of functions.
However, the results do suggest that a larger number of pairs (e.g., 10M) did
not necessarily contribute to significantly more accurate results.

Practical Deployment. We posit that a number of useful activities can be per-
formed with our tool such as approximating the prevalence of emerging advanced
malware threats, filtering previously known binaries, or identifying the adoption
of new attack techniques across different campaigns. The proposed approach
to perform code reuse analysis would allow human analysts to locate emerging
trends by looking for code samples with lower similarity scores. For instance,
we automatically identified several variants of OceanLotus campaign by simply
looking for code samples with similarity score less than 15%. Furthermore, by
applying a higher similarity score, it is possible to perform scalable unsupervised
learning and group more relevant code based on their function-level similarity.
We empirically showed that this approach works well in practice by analyzing
3,000 previously unknown samples (see Section 3).
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5 Related Work

Binary Code Similarity Detection. Binary code similarity detection has
been applied to many applications, including code plagiarism detection [43,62],
malware family and lineage analysis [6,34], and vulnerability analysis [10] to
name a few.

State-of-the-art BCSD solutions heavily rely on a specific syntactic feature
of binary code extracted via static analysis such as control flow graphs (CFGs)
[8,23,60,19]. The majority of these solutions have low accuracy, especially when
it comes to advanced malware that leverages several anti-analysis techniques to
circumvent the static analysis. On the other hand, few solutions are proposed
that are more resilient against anti-analysis techniques such as obfuscation and
have considered semantics of binary codes to identify possible similarities. Nev-
ertheless, they have not been applied to malicious binaries. Contrary to these
solutions, SCRUTINIZER relies on syntactic features that are extracted from
decompiled memory snapshots taken during dynamic analysis.
Authorship Attribution. Previous studies have also explored different ways
through which users can be deanonymized based on their coding styles. Two
broad categories of methods have been investigated in academia to address this
problem that work either at the binary-level [61,11,47] or at the source code
level [12,1,16]. Binary-level methods, while fast and useful, work under the as-
sumption that a toolchain provenance is used to generate the binary, including a
specific compiler, operating system and source language. In contrast, code-level
methods are more flexible, specifically because coding styles of authors at the
source code level are not lost during compilation. Recent works have relied on
coding style features and have leveraged machine learning to develop more ro-
bust mechanisms for code authorship attribution. For example, Abuhamad et
al. [1] have proposed a system that attributes code at a large scale effectively
using deep neural networks. Caliskan-Islam et al. have relied on random forests
and syntactic features from ASTs to de-anonymize code authors based on their
coding styles [12,2]. While these approaches are effective in attributing code
to specific authors, they are less effective when dealing with adversarial code
that has been decompiled and where coding style features such as the naming
conventions for variables have been lost. In comparison to existing authorship
attribution work, our work fills the gap and addresses the code similarity de-
tection problem in code that is only available as binary, and where source code
needs to be extracted.
Malware Clustering. Automated malware clustering has received well-
deserved attention in the past as it helps to identify the type and severity of
the threat that each malware specimen constitutes. Also, it is useful in tracing
new trends in malware samples and creating detection signatures and removal
procedures. These approaches can be categorized into three main groups de-
pending on their feature extraction strategy. The first category of approaches
rely on features that are extracted statically before the binary is executed. For
example, MutantX-S [32] is an automated tool that relies on code instruction
sentences to cluster malware samples. The second category of approaches lever-
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age features that are extracted at run-time, normally by running the sample
in an emulated environment. As an example, Bayer et al. [6] run each binary
in a sandbox and cluster malware specimens based on their behavioral profiles
and how they interact with the operating system. Finally, the third category
makes use of features that are extracted before and after the execution time.
An example includes DUET [31], a tool that relies on both static and dynamic
features to cluster malware binaries. Note that these tools are primarily inter-
ested in automatically identifying to what family an unknown, obfuscated (or
encrypted) sample belongs to. They are not focused on coding patterns to be
able to determine campaign similarity or potential attribution.

6 Conclusion

In this paper, we presented an automated system for malicious code similarity
identification and campaign attribution. The system decompiles binaries of both
malicious and benign applications and encodes their functions using Siamese
networks. It then clusters function encodings into different groups and leverages
cluster tags created during clustering to facilitate the analysis of new samples
that anti-malware companies receive every day. We deployed SCRUTINIZER
in a real-world setting and it proved to be useful in both function filtering (i.e.,
reverse engineering) and code reuse analysis on APT campaigns. Using this
system, we were able to identify 12 samples that were previously unknown to us
and that we were able to correctly assign to well-known APT campaigns.
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