
Outguard: Detecting In-Browser Covert Cryptocurrency Mining
in the Wild

Amin Kharraz† Zane Ma† Paul Murley† Charles Lever⋄

Joshua Mason† Andrew Miller† Nikita Borisov† Manos Antonakakis⋄ Michael Bailey†

†University of Illinois Urbana-Champaign ⋄Georgia Institute of Technology
ABSTRACT

In-browser cryptojacking is a form of resource abuse that leverages
end-users’ machines to mine cryptocurrency without obtaining the
users’ consent. In this paper, we design, implement, and evaluate
Outguard, an automated cryptojacking detection system. We con-
struct a large ground-truth dataset, extract several features using
an instrumented web browser, and ultimately select seven distinc-
tive features that are used to build an SVM classification model.
Outguard achieves a 97.9% TPR and 1.1% FPR and is reasonably
tolerant to adversarial evasions. We utilized Outguard in the wild
by deploying it across the Alexa Top 1M websites and found 6,302
cryptojacking sites, of which 3,600 are new detections that were ab-
sent from the training data. These cryptojacking sites paint a broad
picture of the cryptojacking ecosystem, with particular emphasis on
the prevalence of cryptojacking websites and the shared infrastruc-
ture that provides clues to the operators behind the cryptojacking
phenomenon.

CCS CONCEPTS

• Security and privacy → Browser security; Web application
security;

KEYWORDS

Browser Security; Web Security; Cryptojacking;

ACM Reference Format:

Amin Kharraz† Zane Ma† Paul Murley† Charles Lever⋄ Joshua
Mason† AndrewMiller† Nikita Borisov† ManosAntonakakis⋄ Michael
Bailey† †University of Illinois Urbana-Champaign ⋄Georgia Institute

of Technology . 2019. Outguard: Detecting In-Browser Covert Cryptocur-
rency Mining in the Wild. In Proceedings of the 2019 World Wide Web Con-
ference (WWW’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3308558.3313665

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 Proceedings of the World Wide Web Conference, published under Creative
Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05. . . $15.00
https://doi.org/10.1145/3308558.3313665

1 INTRODUCTION

The financial success of cryptocurrencies, which are valued at over
280 billion USD in market capitalization1, has drawn the attention
of malicious actors, who attempt to accumulate wealth through il-
legitimate means. One such method is cryptojacking, which entails
hijacking of a victim’s processing power to mine cryptocurrency
without consent. Cryptojacking has been reported in several forms,
including botnets [21, 56] and compromised cloud computing infras-
tructure [44] that mine cryptocurrencies to benefit the attackers.

Recently, a new strain of cryptojacking has emerged: in-browser
cryptojacking, where JavaScript cryptocurrency miners are de-
ployed through websites. In-browser cryptojacking can be enabled
primarily by two developments. First, researchers designed spe-
cialized proof-of-work mining algorithms (e.g., Cryptonight [6])
that make CPU mining reasonably competitive. Second, in-browser
JavaScript performance has been improved through new web stan-
dards (e.g., WebAssembly) and general increases in end-user compu-
tational power. These advances, coupled with the broad deployment
capabilities of the web, have led to reports of in-browser crypto-
jacking on vulnerable websites [37], public Wi-Fi networks [10],
ad-networks [38], and a popular news site [36].

Existing detection mechanisms for in-browser cryptojacking
(henceforth simply referred to as cryptojacking) are nascent and
primarily centered around blacklisting [1, 12, 50] and CPU usage
profiling [46]. Blacklisting is a reactive technique that struggles to
keep up with rapidly evolving web threats [32]. CPU usage profiling
is imprecise and can mislabel online games, videos, and other pro-
cessing intensive JavaScript web applications. As we demonstrate
in Section 3.4.2, this method suffers from high false positive rates of
up to 13% on a small-scale dataset. Recently, L1 cache measurements
have been utilized to effectively detect cryptojacking incidents [30].
While this technique is an improvement over the status quo, it is
limited by the need for manual, case-by-case reverse engineering
of WebAssembly code. Furthermore, reliance on the state of the L1
cache is prone to noise from other running processes and would
affect overall detection accuracy.

This paper presents Outguard, an open-source2 cryptojacking
detection system that uses a machine learning classifier to identify
cryptojacking at scale. As a first step to building Outguard, we sys-
tematically constructed a labeled dataset by scanning the Alexa Top
1M domains with a specially instrumented browser and recording
each site’s resources, provenance, and JavaScript execution traces.
1Market cap for the top 100 cryptocurrencies as of July 2018, according to [11].
2Both code and data are available at https://github.com/teamnsrg/outguard

https://doi.org/10.1145/3308558.3313665
https://doi.org/10.1145/3308558.3313665

Applying existing cryptojacking detection tools to the scan data
yielded a set of 3,006 cryptojacking execution traces from 12 dif-
ferent families. We assembled these cryptojacking traces into two
datasets: a balanced dataset with equal numbers of cryptojacking
and benign website traces, and an imbalanced dataset that more
closely represents the real-world frequency of cryptojacking.

Starting with a wide range of features that pertain to JavaScript
execution, network behavior, and DOM characteristics, we care-
fully analyzed the labeled data to ultimately narrow down to seven
features in four feature categories: browser-based, mining-based,
load-based, and network-based. We tested two different types of
machine learning models, Support Vector Machines (SVM) and Ran-
dom Forests (RF), and ultimately chose SVM as the classifier for
Outguard because it achieves 97.9% TPR and 1.1% FPR.

Effective threat detection systems inevitably prompt malicious
actors to adopt detection evasion techniques. We examined the
resilience of Outguard to multiple forms of adversarial evasion by
removing each feature category andmeasuring the overall detection
accuracy. Our analysis showed that while an adversary can poten-
tially evade some of the features used in the learning process, such
evasion techniques severely cripple cryptojacking operations and
curtail an adversary’s profits. For instance, removing mining-based
and network-based features (e.g., WebAssembly) is feasible, but
their removal makes cryptojacking less attractive to adversaries.

We deployed Outguard in the wild on the Alexa Top 1M do-
mains and discovered 6,302 cryptojacking sites, of which 3,600 had
not been detected by existing techniques. Since in-browser cryp-
tomining, in theory, is not necessarily malicious if user consent is
obtained, we performed additional analysis to verify that, in reality,
nearly all cryptomining sites did not ask for user consent.Through
the lenses of both the Alexa Top 1M domains and passive DNS
data, cryptojacking appears predominantly in the long tail of lower
popularity sites that promote illicit content such as torrents or copy-
righted video streaming. Our analysis also exposed 69 incidents
of cryptojacking loaded through advertisement web pages. These
incidents constituted unintentional cryptojacking, which occurred
without the direct involvement of website owners/publishers.

We examined the delivery of cryptojacking and coordination of
cryptojacking monetization. We classified cryptojacking incidents
into 14 major families based on their source code origin and found
a competitive blend of five families that, in total, accounted for
more than 70% of cryptojacking occurrences. We also detected 486
cryptojacking incidents using 24 less well-known cryptomining
services. These services provide pool mining services that charge
as little as 1% of total mining revenue. Finally, we conducted a cam-
paign analysis and identified 35 cryptojacking campaigns which
ranged in size from 2 to 121 websites. These websites deliver differ-
ent types of cryptojacking libraries such as CoinHive, JSeCoin, and
Crypto-loot.

Given the extent of the identified cryptojacking websites, we
envision multiple deployment scenarios for disrupting cryptojack-
ing operations in the wild. The output of Outguard could be
used to augment blacklists or anti-malware mechanisms in pop-
ular browsers. The proposed detection model could also be used
as a browser extension that preemptively monitors the content
of the visited websites and notifies the user if the website loads a
cryptojacking library.

<html>
<script src="http://delivery.com/cryptojacking.js">
</script>
</html>

http://cryptojacking-website.com1

2

3

Block
1

Block
2

Block
3 4

Figure 1: Cryptojacking overview. Websites (1) include cryp-

tojacking code from a delivery server (2). Victim browsers

executemining tasks assigned from amining pool/proxy (3),

which ultimately adds new blocks to the blockchain (4).

2 BACKGROUND AND RELATEDWORK

2.1 Cryptojacking Workflow

Modern cryptocurrencies are based on blockchain consensus, which
was first presented and popularized by Bitcoin [42]. The blockchain
is maintained and extended by miners, which typically compete
to compute a proof-of-work puzzle that must be satisfied by new
blocks. This proof-of-work serves as both a denial-of-service deter-
rent and an economic indication of commitment to the consensus
protocol. Initial proof-of-work protocols, such as Bitcoin’s Hash-
cash, benefit substantially from custom hardware optimizations,
and most mining now occurs on custom mining rigs.

The development of Cryptonight [6], a new proof-of-work algo-
rithm that significantly reduces the advantages of custom hardware,
positioned GPUs, custom FPGAs/ASICs, and CPUs back into the
same ballpark. In fact, Hashcash relies on brute-forcing SHA-256,
which is easily parallelized and reliant on computational bandwidth,
making it amenable to customized ASIC hardware. Cryptonight,
on the other hand, is a memory-bound protocol (2Mb per core)
that relies on random access to slow memory and each new block
relies on the results of the prior block. One likely side effect of
this development is cryptojacking, which allows an adversary to
exploit a victim’s computing power to mine cryptocurrencies with-
out consent. Figure 1 outlines the cryptojacking workflow, which
involves several entities, starting with user-facing cryptojacking
websites. These websites are loaded through a user’s JavaScript-
enabled web browser and embed a cryptojacking JavaScript library,
either through intentional design or hacker injection. The crypto-
jacking library is delivered from a delivery server, which can reside
on the same domain as the base website or, more commonly, is
loaded through a separate delivery server host.

Once the cryptojacking code has begun execution, it connects to
a mining pool proxy in order to receive mining tasks. A proxy server
is often employed between the mining pool and cryptojacking
miners to limit the number of connections and further subdivide
mining tasks assigned by the mining pool. Prior to mining, each
mining operator (who may control more than one miner) will have
registered a mining account with the mining pool, so that she

2

can receive payments for her cryptojacking efforts. Some form of
account identifier is usually transmitted from the cryptojacking
client to the mining pool to correctly map mining output to the
correct mining account. These communications typically occur via
Stratum [2], a JSON RPC protocol for mining pool coordination
that is cryptocurrency-agnostic. The mining pool monitors the
blockchain and assigns mining tasks to each miner that connects
to it. These tasks are a low threshold version of the actual proof-
of-work puzzle, so that the mining pool can record and reward
incremental mining effort. Occasionally, when one of the completed
tasks constitutes a successful block, the mining pool adds the block
to the blockchain and claims the associated mining reward for
itself. Then, periodically, the mining pool will distribute a portion
of this reward among its mining accounts in proportion to the work
accomplished; the rest is kept as a mining pool fee. These fees are
typically around 10–30%, but can be as low as 1% or 2% [51].

The description provided thus far has focused on the components
involved in the cryptojacking workflow. In reality, many of these
components are controlled by a shared operator. To elucidate the
common mappings between components and operators, we present
two scenarios: full-service cryptojacking and do-it-yourself (DIY)
cryptojacking. For full-service cryptojacking such as CoinHive, a
website owner or hijacker only needs to create a CoinHive account
and then insert a script inclusion tag her website. In this scenario,
CoinHive operates the delivery server and the mining pool / proxy.
For a DIY use case, the publisher may host her own delivery server
and have the cryptojacking code connect to a public mining pool.

2.2 Related Work

Techniques seeking to gain financial profit through unauthorized
access to a victim computer are numerous. There is a large body
of work studying adversarial attempts to profit from end-user ma-
chines. Ransomware [25, 27, 29, 45], malicious advertisements [7,
33, 35, 57], click fraud [19], web-based social engineering attacks [5,
8, 9, 26, 34, 52, 54], online scams [28, 40], and Potentially Unwanted
Programs (PUPs) [31, 43, 49] are only a few examples of these ac-
tivities in the wild. In the following paragraphs, we explain more
closely related work on cryptojacking operations.

A subset of prior work on cryptojacking [16, 41, 47] mainly fo-
cuses on the impacts of unwanted mining on user machines (e.g.,
CPU utilization), and provides an estimate of network size and rev-
enue for CoinHive. In this paper, we mainly focus on less noisy fea-
tures that can facilitate automatic detection. Very recently, Konoth
et al. [30] and Hong et al. [20] concurrently and independently
performed systematic analyses on cryptojacking incidents. Hong
et al. [20] proposed two techniques by statically searching for a
set of fixed signatures in cryptojacking code as well as identifying
patterns in the execution stack. The authors demonstrated the in-
sufficiency of blacklists and provide insight on a set of techniques
(e.g., obfuscation) that are currently used by adversaries to bypass
blacklists. While there are some similarities between their detection
approach and ours (e.g., identifying specific patterns), Outguard
mainly relies on dynamic behaviors of cryptojacking libraries that
are the core components of in-browser cryptojacking, and that are
quite unlikely to be used in the same way in benign programs. We
elaborate on the feature set in Section 3, and show that the system

Code Family Currency MinerBlock Wappalyzer (MS%) Labeled Dataset (%)

JSEcoin JSECoin ✓ ✓(30.6%) 1,358 (45.2%)
CoinHive Monero ✓ ✓(48.2%) 1,124 (37.4%)
CoinHive Captcha Monero ✓ ✓ 132 (4.4%)
DeepMiner Monero ✓ ✓ 88 (2.9%)
Coinimp Monero ✓ ✓ 68 (2.3%)
Crypto-Loot Monero ✓ ✓ 55 (1.8%)
ProjectPoi Monero - ✓(19.2%) 43 (1.4%)
Coinlab Monero ✓ ✓ 43 (1.4%)
Cloudcoins Monero ✓ ✓ 42 (1.4%)
Monerominer Monero ✓ ✓ 28 (0.9%)
Coinhave Monero - ✓ 15 (0.5%)
Monero.cc Monero ✓ ✓ 10 (0.3%)
Webmine Monero - ✓ -
Inwemo Monero - ✓ -

Total - 10 families 14 families (100%) 3,006 (100%)

Table 1: The training set of cryptojacking libraries we collected.

Wappalyzer recognized all the libraries collected, but lacks market

share (MS%) data for most of the families at the time of writing. Our

labeled dataset of 3,006 websites covers 12 of 14 (85%) cryptojacking

libraries.

still achieves high detection coverage if adversaries utilize different
levels of obfuscation techniques.

The prior workmost relevant to ours is MineSweeper [30], which
introduces a static analysis technique to study the wasm code used
by cryptojacking code. While this approach is an improvement
over the status quo, it would be desirable to complement it with a
more generic approach that requires minimal human intervention.
Outguard does not require manual analysis, and does not rely on
cryptographic primitive identification. This was a conscious design
choice to avoid possible false positive cases, as acknowledged by
the authors [30]. MineSweeper also shows that CPU cache L1 event
monitoring can be quite useful in detecting cryptojacking websites
by analyzing two cryptojacking families with 100% CPU usage.
While WebAssembly provides significant freedom to manage the
memory layout, an adversary may not be able to selectively load
mining operations in the L1 or L3 cache in order to bypass the pro-
posed detection. However, our analysis reveals that cryptojacking
libraries impose different L1 cache event loads as a function of the
CPU threshold, leaving threshold-based approaches still vulnerable
to future evasion. Furthermore, measuring CPU cache events is
a very expensive operation, as the entire process of inferring the
state of the CPU cache is very sensitive to noise and to the global
status of other active applications on the test machine. This makes
approaches similar to MineSweeper less likely to scale. Outguard
does not have this limitation, and the detection accuracy of Out-
guard is not impacted by the type of cryptographic function or
CPU-related features (see Section 3). Thus, Outguard is a more
generic solution to the same problem space.

3 OUTGUARD

Because cryptojacking is still in its infancy, existing detection
mechanisms are still sparse and relatively naive: NoCoin [46],
minerBlock [4], and CoinBlockerLists [1] rely on open-source, user-
updated blacklists to match domains or filenames. Building of an
automated cryptojacking detection system in this nascent land-
scape requires a full construction process: building a ground-truth
dataset, creating features, selecting features, training a classification
model, and finally evaluating the model under benign and adver-
sarial inputs. In this section, we describe Outguard’s architecture,
shown in Figure 2, and detail its implementation and performance.

3

Model Searching &
Evaluation

Feature
Selection

Benign/Malicious
 Dataset

Dynamic Trace
Collection

Visiting via
Instrumented Browser

Analyst
Feature

Construction

Figure 2: A high-level view of Outguard’s architecture.

3.1 Building Ground Truth

Currently, no reliable labeled datasets for cryptojacking websites
exist. To begin building our training dataset, we first aggregated the
frequently updated public blacklist patterns in CoinBlockerLists [1]
as well as the blacklist patterns used in popular browser extensions
NoCoin [46] and minerBlock [4]. We scanned the Alexa Top 1M
websites using our instrumented Chromium browser and collected
3,006 websites that contained JavaScript libraries or delivery servers
matching the blacklist patterns.

To further label the cryptojacking libraries, we used Wappa-
lyzer [53] version 5.2, a web technology detection tool that lists the
libraries used by a given website. Wappalyzer labels cryptojacking
JavaScript (JS) code by examining its origin. To create our labeled
dataset, we incorporated the same methodology by mapping URLs
to cryptojacking family names. For example, if the code originated
from http//cdn.cloudcoins.co, we labeled the code as an in-
stance of the Cloudcoin family. As shown in Table 1, we found
12 cryptojacking families in our labeled data, which cover 100%
of the cryptojacking libraries known to MinerBlock. We did not
find any instances of two out of the 14 total cryptojacking libraries
known to Wappalyzer: Inwemo and Webmine. Inwemo is a seem-
ingly defunct advertising replacement product [22], and Webmine
is a similar product based in the Czech Republic.

To build a ground-truth set of non-cryptojacking websites, we
randomly selected websites from the Alexa Top 100K. Even though
there have been a few reported cases of high popularity sites ex-
hibiting cryptojacking [13, 36], these websites are generally well-
maintained and less likely to be subject to new security incidents (as
later indicated in Section 5). The non-cryptojacking dataset covers a
variety of real-world websites, including dynamic and high-profile
websites such as news, legitimate video streaming, and popular com-
panies’ websites as well as static websites. This also contains a wide
range of JS usage, including high-usage sites (e.g., cnn.com). We
combined the ground truth cryptojacking and non-cryptojacking
websites into two training datasets: a balanced dataset and an imbal-
anced dataset. The balanced dataset (BD) contains equal numbers
of 2,000 cryptojacking and 2,000 benign websites. The cryptojack-
ing websites were selected randomly and include members of all
the 12 labeled cryptojacking families. The motivation behind the
imbalanced dataset (ID) is that, in reality, there are significantly
more benign websites than cryptojacking websites, and a balanced
distribution may bias the accuracy of the classifier. To analyze the
performance of the classifier, we built the ID with an imbalance
ratio of 1 to 10, such that it contains 2,700 cryptojacking websites
and 27,000 benign pages.

3.2 Feature Selection

After carefully examining a variety of cryptojacking websites in
our labeled data, we developed a set of features that are broadly
characteristic of cryptojacking libraries. Starting with the raw trace
data from our data collection, we considered almost all the related
features in rendering and JavaScript engine that could be useful in
attributing the runtime behavior of JS code. However, we narrowed
down our list to 12 features, as we observed those 12 features can
potentially reflect cryptojacking behaviors more accurately. We
investigated the following features, which we suspected would be
strong indicators of cryptojacking, but that did not prove to be
distinctive cryptojacking features.

• JS engine execution time: We expected JS execution time to
dominate a cryptojacking website, but found that this feature
is very noisy; many websites continuously execute JS.
• JS compilation time: Cryptojacking did not display significant
differences in JS compilation time.
• Garbage collection: Garbage collection is often a loose proxy
for memory usage, but we didn’t find differentiating behavior
for cryptojacking libraries.
• Iframe resource loads: Cryptojacking code is often loaded
in an iframe, but rampant advertising iframes drowned out
meaningful data.
• CPU usage: Cryptomining relies directly on CPU resources,
but many cryptojacking libraries throttle CPU usage and are
hard to distinguish from JavaScript-heavy sites.

Ultimately, by applying our domain knowledge and evaluating
different potential features, we converged on seven features that
represent the JS runtime execution, networking, JS event loads, and
cryptomining properties of cryptojacking libraries. These features,
with the potential exception of WebSockets, are essential for the
profitable operation of cryptojacking campaigns. We show that
all seven features are nearly ubiquitous across all 12 families of
cryptojacking libraries in our labeled training set. We expand on
each feature below.

WebWorkers Web workers are a modern JS feature first spec-
ified by W3C in 2009 [23] for executing JS files in background
threads, independent of a site’s main execution thread. Compared
to non-cryptojacking usage of web workers for processor-intensive
tasks (e.g., image processing during photo upload), we found that
cryptojacking libraries aremore likely to utilizemultiplewebworker
threads for running several mining tasks concurrently. We observed
that almost all 12 families utilize at least 3 web workers to perform
mining. Outguard’s instrument browser dynamically extracts the
number of threads as a feature for cryptojacking detection.

Parallel Tasks We observed that benign websites typically cre-
ate threads for specific purposes (e.g., caching or streaming video).

4

Our analysis shows that in all the cryptojacking websites, in ad-
dition to running multiple web worker threads, cryptojacking li-
braries tend to run the same tasks in each thread, repeatedly in-
voking the same sequence of method calls. Outguard outputs the
number of identical tasks as a numeric value for detection.
WebAssembly WebAssembly, or wasm [55], is a new web stan-
dard introduced in 2015 that allows web developers to specify
assembly-like code that executes onmodern browsers at near-native
speeds. The performance of WebAssembly makes it an attractive
target for processing intensive cryptomining, and we found that
all cryptojacking libraries in our training set use WebAssembly.
Outguard detects the usage of WebAssembly by monitoring the
exchange of wasm modules between the main execution thread and
web workers. This detection technique, which is oblivious to the
communication obfuscation found in some variants of CoinHive,
results in a boolean feature that indicates the presence or absence
of WebAssembly.
WebSockets WebSockets are a low-overhead, full-duplex com-
munication channel over TCP that was standardized in 2011. Our
analysis shows that most mining modules in a browser establish a
WebSocket connection to a remote mining pool/proxy. In addition
to overcoming some limitations of JavaScript APIs in accessing the
TCP socket, WebSocket provides a faster communication channel
than standard TCP, as it eliminates the sending of additional HTTP
headers for each client-side request. We also observed that cryp-
tojacking libraries use WebSocket APIs to receive data from the
mining pool which reduces bandwidth usage. Outguard searches
for webSocketCreate events in its JS execution traces and outputs
a numeric feature value for the number of WebSocket connections.
HashAlgorithms As shown in Table 1, Monero is the most com-
mon cryptocurrency mined by cryptojacking libraries. Monero min-
ing is a proof-of-work (PoW) task that requires the repeated calcula-
tion of the CryptoNight hashing algorithm, which can be calculated
efficiently on consumer CPUs. Outguard identifies CryptoNight
hashing by searching for specific function names and binary signa-
tures in JS execution call stacks. For instance, JSECoin and some
CoinHive variants call functions named module._cryptonight_hash
and CryptonightWASMWrapper.hash, respectively. On the other
hand, CoinHave embeds and executes binary wasm hashing func-
tions inline for which we also developed detection signatures. This
detection mechanism outputs a boolean feature.
PostMessage Event Load Webworkers constantly have to send
the results of mining operations to the main process by sending the
job id, the nonce, and the result of each operation. This information
is then sent to mining proxies over WebSocket connections in order
to manage mining tasks. The communication between the renderer
process and the web workers is handled via PostMessage. As the
number of web workers is significantly high in cryptojacking web-
sites, and PostMessages are the only form of communication with
web workers in most modern browsers, a large number of PostMes-
sage events in site visits can be an indication of cryptojacking. We
report the total number of PostMessage events as a numeric feature.
MessageLoop Event Load Chromium performs task manage-
ment among threads by using MessageLoop. When a WebAssmebly
module is loaded into a web worker thread, it starts cryptographic

Metric SVM Random Forest
BD ID BD ID

TPR 96.2% 97.9% 95.6% 97.1%
FPR 0.2% 1.1% 1.3% 2.8%
AUC 97.8% 98.4% 96.9% 98.1%

Table 2: 10-fold cross-validation on Support Vector Ma-

chines (SVM) and Random Forest (RF), using balanced (BD)

and imbalanced (ID) datasets. We selected SVM as the clas-

sifier for Outguard because of its superior 96.2–97.9% TPR

and 0.2–1.1% FPR.

operations inside loops. These operations are pushed to the Mes-
sageLoop of the thread to be sequentially processed. While use of
MessageLoop does not by itself necessarily mean that a website
is performing cryptojacking operations, a significantly large num-
ber of MessageLoop events during a short site visit, along with
other features, can be an indication of cryptojacking. We report the
number of MessageLoop events as a numeric value.

3.3 Prototype Implementation

Automatic recording of the dynamic behavior of client-side JavaScript
code, such as resource usage, code provenance, and network com-
munication, is a non-trivial challenge. In order to extract these
features from websites, we instrumented Chromium and leveraged
the Chromium Debugging Protocol [17] to access nearly all the
functionality of DevTools [18]. More specifically, the crawler col-
lected browser request and response traces, JavaScript execution
traces, and the source code of both inline and dynamically loaded
JavaScript code. This set of information was sufficient to attribute
specific JavaScript code to the requested computational resources,
the functions being executed, any external code referenced by the
function, and the execution time spent per function. This trace
data includes all features we discussed with respect to the feature
selection phase. We deployed the Outguard crawler on 40 vir-
tual machines. For each website, the crawler stayed on the visited
website for 45 seconds and interacted with the page by programmat-
ically scrolling to the bottom of the page to simulate user behavior.
We empirically found that 45 seconds was sufficient time for a
cryptojacking website to load a cryptojacking library, communicate
with a mining pool, and run mining tasks. Our analysis on 1,000
randomly selected websites shows that the run-time overhead of
the instrumentation layer is approximately 2%.

The second module of Outguard is a classifier that analyzes
the collected data and detects cryptojacking websites by incor-
porating the features described in Section 3.4. To construct the
detection model, we tested multiple classification algorithms and
found that an SVM classifier produced the best detection results
on the training dataset. To construct the classification model, we
used the SVM implementation provided by scikit-learn [48]. We
evaluate the classifier in Section 3.4.

3.4 Evaluation

In this section, we examine Outguard’s detection accuracy on the
ground-truth training dataset and compare it with CPU utilization,
an existing cryptojacking detection heuristic. To identify the best
machine learning algorithm for automatic classification of crypto-
jacking libraries, we ran a 10-fold cross-validation on our BD and

5

Rank Feature Category Score Ratio New?

1 No. Web Workers E 100% ✓
2 Creating Identical Tasks E 93.7% ✓
3 PostMessage Event Load L 91.2% ✓
4 Using WebAssembly E 85.8% [20, 30]
5 MessageLoop Event Load L 82.3% ✓
6 Using Hash Functions M 76.4% [20]
7 No. WebSocket Connections N 48.2% [30]

Table 3: Feature importance ranking inOutguard. Features

are grouped into categories based on runtime execution (E),

mining (M), Event Load (L), and network (N) behavior.

ID training datasets by using the scikit-learn [48] implementations
of Support Vector Machines (SVM) and Random Forests (RF), based
on prior work that showed these two classification algorithms work
well on balanced and imbalanced datasets [28]. As shown in Ta-
ble 2, both models perform above 95% TPR and below 3% FPR. We
selected SVM as the default classifier for Outguard because it
slightly outperforms the RF model across both training sets.

The SVMmodel chosen forOutguard is highly selective, achiev-
ing TPR rates of 96.2% and 97.9% for our BD and ID datasets, respec-
tively. Our analysis of the detected cases revealed that Outguard
achieved a false positive rate (FP) of 1.1% (with 32 false detections)
on an imbalanced dataset. Further manual analysis revealed that
all the false positive cases were a set of parked domains that in-
serted 29 JavaScript scripts, on average, including trackers and
advertisements. These websites were falsely labeled as cryptojack-
ing because multiple trackers were using WebSocket connections
for communications, and some of these scripts created multiple
threads for client-side data processing. Our manual analysis of the
false negative cases revealed that Outguard was unable to detect
some variants of CoinImp because they did not contain indicative
function calls in their execution traces, and they used fewer than
three web workers.

3.4.1 Feature Analysis. We divided the features we selected in
Section 3.2 into four categories in order to reason about subse-
quent analysis, such as feature ranking and classification evasion,
from a feature function perspective. The categories are (1) runtime
execution-based features such as WebAssembly usage; web worker
quantity, and running of parallel tasks for mining activities; (2) a
network-based feature which describes the type of communication
between the mining module and the mining pool; (3) event load-
based features such as MessageLoop and PostMessage Load, and (4)
a mining-based feature that looks for hash algorithm fingerprints.

To determine the significance of each incorporated feature, we
performed recursive feature elimination (RFE) using Outguard’s
SVM model on the BD dataset. The ranking procedure begins with
all seven features. At each subsequent step, a feature with the mini-
mum weight is removed, and the FP and TP rates are re-calculated
to measure the contribution of the removed feature. Table 3 displays
the ranks of all features, in descending order of importance. For
convenience, we derived a score ratio by dividing each feature score
with the maximum score. We found that the five most predominant
detection features target the dynamic characteristics of cryptojack-
ing, making the system more resilient to common evasions such
as code obfuscation. This matches our intuition that such behav-
iors contribute to successful mining operation – avoiding these
techniques would likely impact revenue generation.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Tr
ue

 P
os

iti
ve

 R
at

e

Exclude mining-based & network-based features
All features
Exclude mining-based feature
Exclude mining, network, and event-based features

0.00 0.05 0.10 0.15 0.20
0.80

0.85

0.90

0.95

1.00

Figure 3: Detection results of Outguard on the labeled

dataset when different evasive scenarios were used.

3.4.2 Evaluating the Effectiveness of CPU Utilization. We com-
pared Outguard’s classification model against a CPU usage model
which is a detection heuristic utilized by several reports [14, 39].
We collected the traces of all websites in our BD training dataset
that consumed at least 50% of the total CPU capacity. One might
expect a 50% CPU usage threshold to be reasonable for detecting
cryptojacking given that we observed cryptojacking libraries from
all 12 families establish CPU thresholds of at least 50% of the total
CPU capacity. The CPU usage heuristic was applied to the BD. Out
of the 2,000 non-cryptojacking websites in BD, CPU usage heuristic
misclassified 263 as cryptojacking websites (false positive rate =
13.1%). Manual inspection of a handful of these cases revealed non-
cryptojacking websites that introduced high CPU overhead due to
a large number of requests and responses, constant JavaScript com-
pilation, and frequent dynamic changes in the DOM during script
loads. For example, a visit to cnn.com, a high-profile news website,
generated an execution trace with 151 unique domain names that
were used to retrieve JavaScript resources and other content (e.g.,
fonts, images, and styles).

Our comparative analysis demonstrates that it is not uncommon
for non-cryptojacking websites to exhibit high CPU utilization,
even for websites that typically do not require elevated CPU usage
in order to function. CPU utilization can be a helpful feature for
analysis of cryptojacking at small scales, but it is a less effective
feature for automatic detection at scale. CPU usage is a noisy signal—
relying on this heuristic increases the likelihood of false positive
cases when hundreds of thousands of websites are being analyzed.

3.5 Adversarial Considerations

Cryptojacking operators, likemalware authors, are likely to exercise
techniques to evade Outguard by changing their implementation
strategies. To address potential evasion scenarios, we evaluated the
efficacy of Outguard’s SVMmodel with specific feature categories
selectively removed. Figure 3 summaries the results of the experi-
ment. The solid green curve shows the ROC curve of Outguard
when it incorporates all the features into the detection model. The
dotted purple curve represents the ROC curve in the absence of
mining-based features. Evasion of this feature from the detection

6

model is a realistic possibility as our approach to detect hashing al-
gorithm usage is somewhat brittle because it is based on collecting
in-line binaries that are statically included in cryptojacking libraries
or on finding references to a specific hash function in execution
traces. Cryptojacking operators can re-generate cryptojacking bina-
ries by adding dead code or by renaming functions, much as evasive
malware does, to bypass mining-based feature. In this scenario, the
detection performance of Outguard degrades, but it still achieves
a relatively high detection accuracy, with 93% TPR and 1.2% FPR.
The mining-based feature is important, but as suggested by the
RFE analysis, it is not precariously important, since Outguard still
achieves high detection results without it.

In the next step, we excluded the network-based feature with
the assumption that a cryptojacking library may forgo a websocket
connection to the mining pool/proxy server and connect through
other means instead. For instance, the code may use standard TCP
connections or JSONP or other communication techniques. In this
case, Outguard will rely on event loads and runtime execution
features to identify cryptojacking activity. The dashed blue ROC
curve illustrates Outguard’s performance with mining-based and
network-based features excluded. The system still achieves 92%
TPR and 1.5% FPR. In the final experiment, we removed the event
load features under the assumption that adversaries may try to limit
the number of threads, and thereby impact the generated events
between the web workers and the host process. The red ROC curve
illustrates Outguard’s performance. In this case, Outguard relies
solely on runtime execution features to identify cryptojacking ac-
tivity. Use of runtime features (e.g., WebAssembly) in cryptojacking
libraries is vital from profitability perspective, as these libraries
have to incorporate such browser functionalities to use system
resources effectively. Failing to do so would make the in-browser
cryptomining not practical or less attractive for generating revenue.
So in this final scenario, the classification accuracy has decreased
significantly with the loss of networking features, down to 87%
with 1.1% FPR.

Note that while an adversary can evade network or event load
features, doing so will likely have a significant effect on the efficacy
of mining operations, as the mining module requires low-overhead
connections in order to communicate with mining pools. Further-
more, as discussed in Section 2, in-browser cryptojacking relies on
multiple external parties to operate. Consequently, network-level
changes requires compatibility with the rest of the parties involved
in the ecosystem (e.g., pools and proxies). Moreover, minimizing
of JS event loads to evade the corresponding feature set is not a
trivial task, as the entire operation, including task management
and task execution, significantly depends on the communication
between the host process and the mining threads. Overall, we argue
that a tool similar to Outguard can provide robust detection of
cryptojacking websites and potentially increase the operational
costs of cryptojacking or reduce the generated revenue of such
operations.

4 REAL-WORLD DEPLOYMENT

We demonstrated the feasibility of real-world deployment of Out-
guard by performing an analysis of the Alexa Top 1M websites.
Outguard detected 5,873 instances of cryptojacking. Using this

Results Experiment 1 Experiment 2 Total

Target crawl size Alexa 1 Million Alexa 600K -
URLs visited 3,798,433 1,329,684 5,128,117
Unique cryptojacking domains 5,873 429 6,302
New detections 3,171 429 3,600 (57%)
Overlap with MinerBlock - - 3,776 (60%)
Overlap with AntiMiner - - 3,684 (58.5%)

Table 4: Number of cryptojacking incidents detected byOut-

guard. 3,600 (57%) of the detected cryptojacking websites

were new detections.

data, we characterized the broader cryptojacking ecosystem by
examining the websites on which cryptojacking occurs, and the
infrastructure supporting its mining and monetization. We later
performed a scan of the Alexa Top 600K websites to supplement
the case study.

For the real-world application of Outguard, we enabled Google
Safe Browsing in our instrumented browser to avoid falsely re-
porting cryptojacking that might be prevented by default browser
protection mechanisms. That allowed us to represent realistically
the cryptojacking exposure of an end-user browsing the web. We
also modified Outguard to access 3 random links on each Alexa
Top webpage to simulate user interaction/navigation on the page.
The measurements were conducted over two time ranges: the first
scan took place from February 12 to April 15, 2018, on the Alexa
Top 1M websites, and the second scan took place from October
20 to October 30, 2018, on the Alexa Top 600K websites. In total,
Outguard reported 6,302 cryptojacking websites across 5,128,117
URLs, as shown in Table 4.

4.1 Obtaining User Consent

Mining cryptocurrency in a browser is not inherently malicious,
and in-browser cryptomining has been presented as a justifiable
business model alternative to advertising and captcha services. The
lack of user consent is the distinguishing factor between legitimate
in-browser cryptomining from cryptojacking.

We performed a manual analysis of 100 randomly selected web-
sites that contained the JSECoin library by visiting the websites
and checking whether the opt-in system was enabled on them. 22%
of the websites were not reachable during the manual check (e.g.,
mxqproject.com, masir.us). We found that in the remaining 78%
of websites, the JSECoin cryptojacking library was automatically ex-
ecutedwithout user consent (e.g., media9.pk, seriesenlinea.net).
Furthermore, on late 2017, CoinHive introduced a version of crypto-
mining code called AuthedMine, which requires user permission to
turn the browser into a Monero miner. We did not find any instance
of this library either in the training or in the large-scale deployment
of Outguard, which mirrors other reports [24]. This experiment
suggests that website operators are likely to be reluctant to use
libraries with explicit opt-in forms, and that most detected cases
do, in fact, constitute cryptojacking.

4.2 Detection Coverage Evaluation

In total, Outguard detected 6,302 cryptojacking websites. 3,600
of the detected sites in our two experiments were newly detected
websites not observed in the training dataset. Since we do not have
ground truth labeled data in the large-scale experiment, we cannot
provide precision-recall analysis of the detection results. However,

7

manual analysis shows that Outguard falsely reported 14 web-
sites as cryptojacking because they were loading several frames
and iframes to embed videos and pop-ups. In addition to creating
multiple threads, we observed several WebSocket connections with
remote servers to load streaming content in these websites. We con-
sider these cases false positives. The manual analysis of the trace
files indicated that the remaining newly detected websites were
true positives. We cross-checked the output of Outguard against
dedicated security solutions such as MinerBlock [12] and Anti-
miner [50]. Table 4 summarizes the results of the experiment. Our
examination of the filtering lists in these extensions showed that
these extensions are not specifically designed to identify cryptojack-
ing websites. Rather, they primarily look for addresses of known
mining pool proxies (e.g., xmrpool.net). As shown in Table 4, Out-
guard had approximately 40% more coverage than MinerBlock and
41.5% more coverage than AntiMiner.

While disrupting the communication between the cryptojacking
libraries and the mining pools is an effective mitigation technique,
this approach is less likely to be very successful in identifying dif-
ferent variants of cryptojacking families. For example, the naive
versions of cryptojacking families make queries to a specific address
that can easily be detected and blocked. However, we observed
several cases of Crypto-loot, JSECoin, and CoinImp, which use
legitimate cloud deployment services (e.g., now.sh) for this pur-
pose. Unsurprisingly, it is impractical to block a domain name or
IP address that belongs to cloud services without affecting a large
number of other legitimate applications. Consequently, these exten-
sions are limited to domains that do not map to cloud services, and
can therefore be evaded fairly easily. We posit that a solution such
as Outguard that monitors the dynamic behavior of websites and
JavaScript libraries is more likely to prevent cryptojacking incidents
in practice. With that being said, these dedicated security solutions
can benefit from using Outguard by automatically updating their
corresponding filter lists.

5 CHARACTERIZING CRYPTOJACKING

WEBSITES

Armed with the results of Outguard’s deployment in the wild,
we first seek to answer the question of where cryptojacking oc-
curs. Reports of cryptojacking websites have painted a myriad
landscape of sites infected via web vulnerabilities [37], popular
websites with cryptojacking advertisements [13], and suspicious
e-commerce websites [15]. We will now take a comprehensive look
at the 6,302 detected cryptojacking websites, investigating their
popularity, categories, and lifetimes.

5.1 Website Popularity and Type

We look up each cryptojacking website’s Alexa ranking as a metric
for the relative number of visits for each cryptojacking website. 220
websites (3.5%) fall within the top 100K, 602 (9.6%) appear between
the top 100K and top 1M, and the remaining 5,480 (87%) are outside
of the top 1M. This suggests that cryptojacking occurs primarily
in the long tail of lower-popularity websites, as hypothesized in
Section 3.1 during the discussion of training data construction.

In order to better address the 5,480 sites outside of the Alexa Top
1M, we also explored passive DNS data as a means to estimate the

FQDN Lookups (%) e2LD+eTLD Lookups (%)

coinhive.com*† 128.31M (21.5%) coinhive.com*† 308.09M (51.7%)
cnhv.co*† 34.83M (5.8%) cnhv.co*† 34.83M (5.8%)
moonbit.co.in† 15.53M (2.6%) adsptp.com† 19.10M (3.2%)
www.adsptp.com† 13.60M (2.3%) watchfree.to† 17.30M (2.9%)
1480876790.rsc.cdn77.org† 12.87M (2.2%) moonbit.co.in† 15.61M (2.6%)
www.rcyclmnr.com† 12.24M (2.1%) rcyclmnr.com† 13.41M (2.3%)
www.alluc.ee† 9.35M (1.6%) cdn77.org† 12.87M (2.2%)
www.watchfree.to† 9.12M (1.5%) alluc.ee† 12.10M (2.0%)
ws008.coinhive.com* 8.69M (1.5%) crypto-loot.com*† 10.18M (1.7%)
ws013.coinhive.com* 8.68M (1.5%) recycloped.com† 6.77M (1.3%)
ws014.coinhive.com* 8.68M (1.5%) pornxs.com† 6.51M (1.1%)
ws012.coinhive.com* 8.67M (1.5%) faucethub.io† 3.86M (0.6%)
ws011.coinhive.com* 8.67M (1.5%) baiduccdn1.com† 3.85M (0.6%)
ws009.coinhive.com* 8.67M (1.5%) graaam.com† 3.83M (0.6%)
ws010.coinhive.com* 8.67M (1.5%) mycashbar.com† 3.44M (0.6%)
ws030.coinhive.com* 8.39M (1.4%) otohits.net† 2.67M (0.4%)
www.recycloped.com* 6.77M (1.1%) jsecoin.com*† 2.53M (0.4%)
ws020.coinhive.com* 6.73M (1.1%) kickass.cd† 2.23M (0.4%)
ws016.coinhive.com* 6.69M (1.1%) oyunuoyna.com† 2.18M (0.4%)
ws018.coinhive.com* 6.69M (1.1%) xxgasm.com† 2.14M (0.4%)
175,202 others 263.83M (44.3%) 5,807 others 112.19M (18.8%)

Total 595.67M (100%) Total 595.67M (100%)

Table 5: Grouping the top passive DNS lookups by FQDN

and e2LD+eTLD highlights that the expanded passive DNS

dataset includes two types of domains: cryptojacking admin-

istration domains (*) and cryptojacking website domains(†).

relative popularity of the cryptojacking domains. Through the lens
of one of the largest U.S. ISPs, we collected the contents and daily
lookup volume of DNS resource records (RRs) for all successful
DNS resolutions. We extracted all passive DNS RRs that match the
seed list of 5,873 cryptojacking domains from the initial Alexa Top
1M real-world deployment and also included RRs with subdomains
of the seed list. This dataset consisted of 595.6 million RRs collected
from April 2016 to March 2018.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000 10000 100000

C
D

F

of cryptojacking domains

CDF of cryptojacking e2LD + eTLD lookups
CDF of cryptojacking FQDN lookups

Figure 4: Distribution of passive DNS lookups for cryp-

tojacking FQDNs and e2LD+eTLD. By both metrics,

coinhive.com accounts for the most lookups, 21.5% and

51.7%, respectively.

We constructed the initial seed domain list for passive DNS data
collection from websites that have embeded cryptojacking; how-
ever, some domains and their subdomains (e.g. coinhive.com) are
also used for cryptojacking delivery servers or mining pool/proxy
servers that coordinate cryptojacking miners. This muddles the
passive DNS dataset with multiple use cases, but grouping passive
DNS by effective second-level domain (e2LD) and effective TLD
(eTLD), as shown in Table 5, makes it easier to distinct between cryp-
tojacking websites and cryptojacking delivery servers or mining
pools.

To characterize the ecosystem of websites that have embeded
cryptojacking, we categorized the top 100 e2LD+eTLDs, which ac-
counted for 92% of all passive DNS lookups. Granted, domains du-
ally purposed to be both cryptojacking websites and cryptojacking
administration sites have inflated lookup counts, so we examined

8

Category # Category #

torrent 21 software 2
video 15 forum/chatroom 2
unknown 11 education 2
malicious 9 crypto faucet 2
porn 7 pyrotechnics 1
news 7 mining pool 1
cryptojacking 7 manga 1
gaming 4 image upload 1
music 3 automobile 1
traffic exchange 2 advertising 1

Table 6: Categories for the top 100 most popular cryptojack-

ing e2LD+eTLDs.

only the number of domains for each category and did not evaluate
the lookup-weighted category composition. In Table 6 we found
that the top cryptojacking domains were typically sites with illicited
content such as torrent hosting sites, video download/streaming
sites, and malicious websites. Assuming that most of these crypto-
jacking incidents were not the result of website compromise, these
results suggest that cryptojacking is used by criminal actors more
successfully than lawful actors.

One particularly interesting mechanism for cryptojacking deliv-
ery is inclusion through an advertisement on a website through an
embedded iframe. Through this form of indirect delivery, crypto-
jacking can achieve broad distribution, as demonstrated by Dou-
bleClick’s reported inclusion of cryptojacking on Youtube [13].

While we did not detect cryptojacking directly included in adver-
tisements, we did find 69 cryptojacking incidents in landing pages
that resulted from clicking on an advertisement. We measured
these occurrences by cross-referencing the provenance of websites
derived from clicked links with a list of ad domains provided by
EasyList (easylist.to) and Ghostery (www.ghostery.com). We
observed several instrances of crypto–loot and JSECoin libraries
in our dataset. These instances were mainly delivered via specific
ad-networks such as adnxs.com (33%),spotxchange.com (23.1%),
and stickyads.com (14.5%). While the number of advertisement-
based cryptojacking incidents is relatively small, they represent a
fundamentally different type of cryptojacking: unintentional cryp-
tojacking incidents that are dynamically loaded during page loads.

5.2 Website Lifetime

We continuously monitored all cryptojacking websites from our
first deployment, which observed 5,873 websites by crawling them
every ten days for 3 months to approximate their active lifetime.
We labeled a cryptojacking website as inactive if we did not ob-
serve any sign of cryptojacking operations in a given trace file. We
performed 9 crawls over 3 months from May 20 to July 25, 2018
and found that 32% of the cryptojacking websites became inactive
in less than 10 days. These websites were mainly hosted on a set
of cloud servers and were likely managed by the same group of
operators. While we observed a steady decrease in the number of
active cryptojacking operations over time, there were 619 (10.5%)
websites—mostly video streaming, gaming, and application down-
load sites—that stayed active for the entire measurement period.
An additional 1,552 (26.4%) websites hosted cryptojacking libraries
for a moderate duration of 3–9 weeks. In total, 68 (3.1%) of the 2,171
active cryptojacking websites were among the Alexa Top 100K
websites, which impact thousands of users. In fact, this analysis
suggests that current preventions solutions are unable or unwilling

Cryptojacking Family Occurrences Dynamically Loaded

CoinHive 2,206 (35%) 227 (10.3%)
JSEcoin 1,271 (20.2%) 839 (66%)
Crypto-loot 766 (12.2%) 737 (96.3%)
ProsectPoi 348 (5.5%) 228 (65.5%)
CoinHave 321 (5.1%) 170 (53%)
CoinImp 227 (3.6%) 207 (91%)
CoinLab 202 (3.2%) 202 (100.0%)
DeepMiner 176 (2.8%) 162 (92%)
WebMine 139 (2.2%) 111 (80%)
Cloudcoins 57 (0.9%) 43 (76%)
MoneroMiner 53 (0.85%) 7 (13%)
CoinHive Captcha 28 (0.45%) 4(13%)
Inwemo 12 (0.19%) 11 (97%)
Monero.cc 10 (0.15%) 10 (100%)
Previously-Unknown Libraries 486 (7.7%) 214 (44%)

Total 6,302 (100%) 3,172(50%)

Table 7: The number of cryptojacking websites and their as-

sociated cryptojacking families in the Alexa Top 1 Million

websites in 50% of the cases, the cryptojacking library was

loaded from a remote server.

to blacklist active cryptojacking websites including the ones with
higher ranking for several weeks.

6 OPERATIONAL INSIGHTS

As a second case study, we dig into the operations of cryptojacking.
We cluster the identified cryptojacking families, reveal previously
unknown CoinHive-like services, extract mining account identifiers
to group cryptojacking incidents. This aggregated data begins to
reveal the higher-level behavior of the individual and organizational
actors that run cryptojacking.

6.1 The Prevalence of Cryptojacking Families

To identify cryptojacking families that each cryptojacking website
belongs to, we analyzed the downloaded wasm modules to see
whether we can link cryptojacking families together. Although the
names of wasm modules might vary for different cryptojacking
operators, the content of the wasm module is less likely to differ
for a given family. This suggests a relatively stagnant set of wasm
binaries, which are typically compiled from C/C++. To assign a
label to a given website, we considered two features: (1) the ad-
dress of the server that hosted the cryptojacking library (similar
to Wappalyzer), and (2) the hash of the wasm module used by the
library. As displayed in Table 7, we found that these two metrics
were sufficient to label 5816 (92.3%) of the detected websites into
the 14 known cryptojacking families encountered during training
data labeling. We utilized the raw number of discovered crypto-
jacking domains for each cryptojacking family as a proxy for the
family’s market share and found a broad spectrum of cryptojacking
families with significant deployment. There is no single dominant
entity, with the top 3 libraries, CoinHive, JSECoin, and Crypto-loot,
accounting for 60.7% of the market. In total, 50% of all cryptojacking
sites used non-standard hosts for their cryptojacking libraries, sug-
gesting that the hosting server regexes found in certain blacklists
are inherently reactive in their detection capabilities, and even if
updated regularly, they can be easily thwarted.

We performed another experiment on the remaining 486 (7.7%)
cryptojacking incidents and clustered them based on the address of
the remote server that hosted the cryptojacking library. For exam-
ple, Moonify (e.g., moonify.min.js) or Grindcash (gridcash.js)
are CoinHive-like mining services which were not in our training

9

New Mining Servies Occurrences Main Mining Pool

WebXMR 208 xmrm.pw
CoinPot 81 coinpot.co
Coinblind 32 coinblind.com
Punchhub 21 punchsub.net
VidMiner 18 estream.nu
AJCryptominer 15 ajcryptominer.com
CoinNebula 11 coinnebula.com
Ad-miner 11 ad-miner.com
Cryptonoter 9 cryptonoter.com
Lightminer 8 lightminer.co
gridcash 8 gridcash.net
DigXMR 8 digxmr.com
Minercry 7 minercry.pt
Moonify 7 moonify.io
Grindcash 5 ulnawoyyzbljc.ru

Table 8: A subset of previously unknown cryptojacking ser-

vices. 486 cryptojacking incidents were conducted by 24 new

CoinHive-like services.

Campaign ID No. of Sites Main Mining service

pfr5E2eLd0VduZ1wKaesPFnccU9d2GZi 121 coinhive.com
Yq2af5ZaYuELhmPUH524q7sjiaCNCzXr 117 cloudfront.net
FGZZeDbNg5AMpILuz8fKWI4UJqdNIxce 23 xmrpool.xyz
l8Un4BkrkTfKQOEoCRyTtGMfhJFlibNu 16 semipool.com
XcgzWRYl8Lh3r3ElNSznHhP9HAcYtd4g 13 minemonero.pro
Dx8uX9lNo7a3kmGe55vO6bhWMquRd9YG 10 supportxmr.com
15217 7 aalbbh84.info
b7fbc3b2e3d88d9d766dc5ed27db53983ec759be76e2 5 crypto-loot.com
14285 4 bhzejltg.info

Table 9: A subset of cryptojacking campaigns and their corre-

sponding mining pools. 16 out of 35 detected cryptojacking

campaigns were using less expensive or free CoinHive-like

mining services.

dataset, but Outguard identified instances of these libraries in our
large-scale experiment. We identified 24 previously unseen coin-
hive like mining services. Table 8 shows a subset of these mining
services as well as the main mining pool.

6.2 Campaign Analysis

Our analysis show that obtaining the Site Key is possible by search-
ing in network traces and JS source code. While mining services
allow generating several Site Keys per user, in practice, we found
several instances of individual Site Keys being used on multiple
websites simultaneously. We found 386 cryptojacking websites un-
der 35 clusters based on unique Site Keys ranging in size from
2 domains to 121 domains. Table 9 illustrates a subset of these Site
Keys. Our analysis shows that 16 out of 35 detected campaigns were
using less expensive or free CoinHive-like mining services.

To get a flavor for the behavior of a cryptojacking campaign, we
took a closer look at the largest CoinHive campaign. The 121 clus-
tered domains were all registered under anonymous WHOIS ser-
vices and pointed to a set of 23 IP addresses found in 15 ASes,
which were mostly cloud-hosting services. The IPs were globally
distributed in 7 countries including the US, Germany, Australia,
Great Britain, China, Canada, and Switzerland. From Censys.io [3]
we were able to determine that all IPs pointed to HTTP webservers
running either openresty, nginx, or apached. The campaign’s us-
age of multiple anonymous WHOIS services, globally distributed
cloud hosting, and large number of fungible, human-meaningless
domains (e.g. 5565925.com, 2zo.xyz, jipa.gdn,etc.) hint at evasion
techniques characteristic of other web-based malware or PUPs.

7 DISCUSSION AND LIMITATIONS

In this paper, we construct and evaluate Outguard, a resilient
system for detecting cryptojacking that finds nearly twice as many
cryptojacking websites as existing blacklist solutions. As we demon-
strated, a large fraction of websites have short-lived cryptojacking
operations. Therefore, regular scans of the Alexa Top 1M or other
domain lists using a system similar to Outguard can automatically
update blacklists with the latest cryptojacking domains and remove
stale domains.

While the evaluation of Outguard on real-world dataset shows
that it works well in practice, it has three potential limitations. First,
Outguard is subject to bias due to the degree of completeness of
the public blacklists. Like other machine learning approaches, the
effectiveness of Outguard depends on the quantity of the dataset
that we used to generate the model. The hash function detection
mechanism currently relies on static function name/fingerprints
that can be circumvented by an evasive cryptojacking operator. We
expect this to have limited impact based on our feature ranking
analysis. In general, Outguard should be viewed as a lower bound
estimate of the the full cryptojacking ecosystem.

Second, note that Outguard is a supervised learning technique.
Cryptojacking operators may be able exploit this fundamental lim-
itation and change their strategies to evade some of the features
of the detection model. For example, the operators may find alter-
natives to using web sockets or web worker services. We plan to
explore the practicality and profitability costs of these evasions
to cryptojacking operators in future work. While not foolproof,
Outguard is likely to detect a large number of evasion scenarios
as shown in Section 3.5. We believe that Outguard raises the bar
for adversaries to avoid cryptojacking detection and increases the
development cost required to carry out these operations.

Finally, as mentioned earlier, cryptojacking occurs inmany forms
beyond in-browser mining. In this paper, we focused on in-browser
cryptojacking as it is very easy for cryptojacking operators to de-
velop and deploy. In contrast to other common attacks, in-browser
cryptojacking does not require building specific binaries or creating
drive-by download websites, which are more likely to be flagged by
modern anti-malware solutions. Other forms of cryptojacking oper-
ations, such as cryptojacking browser extensions, desktop software,
and mobile apps, are outside the scope of this study.

8 CONCLUSION

We find that in-browser cryptojacking libraries use browser re-
sources in a very similar way. We show that if these traits are
accurately modeled, it is possible to automatically identify a large
number of in-browser cryptojacking operations. Towards that end,
we developed a tool called Outguard, which is able to detect a sig-
nificant number of cryptojacking websites and potentially disrupt
the malicious operations of cryptojacking operators. Consequently,
we conclude that defending against cryptojacking operations at
scale is possible with minimal human intervention.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF)
under grant CNS-1518741 award. We would like to thank the anony-
mous reviewers for their helpful comments.

10

REFERENCES

[1] Coinblockerlists. https://github.com/ZeroDot1/CoinBlockerLists. Accessed: 07-
29-2018.

[2] Stratum mining protocol. https://en.bitcoin.it/wiki/Stratum_mining_protocol.
Accessed: 07-29-2018.

[3] Censys. https://censys.io/, 2018.
[4] Minerblock extension. https://github.com/xd4rker/MinerBlock/blob/master/

assets/filters.txt, 2018.
[5] Abraham, S., and Chengalur-Smith, I. An overview of social engineering

malware: Trends, tactics, and implications. Technology in Society 33 (2010), 188–
196.

[6] Andersen, D. Mining money with monero ... and cpu vector intrinsics. https://
da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html, 08
2014.

[7] Arshad, S., Kharraz, A., and Robertson, W. Include me out: In-browser
detection of malicious third-party content inclusions. In Proc. 20th International
Conference on Financial Cryptography and Data Security (FC) (2 2016), pp. 441–459.

[8] Caballero, J., Grier, C., Kreibich, C., and Paxson, V.Measuring pay-per-install:
The commoditization of malware distribution. In Proceedings of the 20th USENIX
Conference on Security (Berkeley, CA, USA, 2011), SEC’11, USENIX Association,
pp. 13–13.

[9] Cialdini, R. B. Influence: Science and Practice. Writers of the Round Table Press,
Boston, 2009.

[10] Cimpanu, C. Cryptojackers found on starbucks wifi network, github, pi-
rate streaming sites. https://www.bleepingcomputer.com/news/security/
cryptojackers-found-on-starbucks-wifi-network-github-pirate-streaming-
sites/, 12 2017.

[11] CoinMarketCap. Top 100 cryptocurrencies by market capitalization. https://
coinmarketcap.com/, 2018.

[12] CryptoMineDev. MinerBlock. https://chrome.google.com/webstore/detail/
minerblock/emikbbbebcdfohonlaifafnoanocnebl?hl=en, 10 2018.

[13] Dan Goodin. Now even youtube serves ads with cpu-draining cryptocurrency
miners. https://arstechnica.com/information-technology/2018/01/now-even-
youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/, 01 2018.

[14] David Maciejak. Cryptojacking: Digging for Your Own Treasure.
https://www.fortinet.com/blog/threat-research/cryptojacking-digging-
for-your-own-treasure.html, 2017.

[15] de Groot, W. Cryptojacking found on 2496 online stores. https://gwillem.gitlab.
io/2017/11/07/cryptojacking-found-on-2496-stores/, 11 2017.

[16] Eskandari, S., Leoutsarakos, A., Mursch, T., and Clark, J. A first look at
browser-based cryptojacking. CoRR (2018).

[17] Google Chromium. Chrome debugging protocol viewer. https://chromedevtools.
github.io/devtools-protocol/, 2017.

[18] Google Development. Extending DevTools. https://developer.chrome.com/
extensions/devtools, 2018.

[19] Haddadi, H. Fighting online click-fraud using bluff ads. ACM SIGCOMM
Computer Communication Review 40 (2010), 21–25.

[20] Hong, G., Yang, Z., Yang, S., Zhang, L., Nan, Y., Zhang, Z., Yang, M., Zhang, Y.,
Qian, Z., and Duan, H. How you get shot in the back: A systematical study about
cryptojacking in the real world. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (2018), ACM, pp. 1701–1713.

[21] Huang, D. Y., Dharmdasani, H., Meiklejohn, S., Dave, V., Grier, C., McCoy, D.,
Savage, S., Weaver, N., Snoeren, A. C., and Levchenko, K. Botcoin: Monetizing
stolen cycles. In Proc. Network and Distributed System Security Symposium (NDSS)
(2014).

[22] Hunt, P. Inwemo. https://www.producthunt.com/posts/inwemo, 11 2018.
[23] Ian Hickson. W3C Working Draft: Web Workers. https://www.w3.org/TR/2009/

WD-workers-20090423/, 4 2009.
[24] Jerome Segura. The state of malicious cryptomining. https://blog.malwarebytes.

com/cybercrime/2018/02/state-malicious-cryptomining/, 2018.
[25] Kharraz, A., Arshad, S., Mulliner, C., Robertson, W., and Kirda, E. UNVEIL:

A large-scale, automated approach to detecting ransomware. In Proceeding of
25th USENIX Security Symposium (2016), pp. 192–203.

[26] Kharraz, A., Kirda, E., Robertson, W., Balzarotti, D., and Francillon, A.
Optical Delusions: A Study of Malicious QR Codes in the Wild. In Proceeding
of 44th International Conference of IEEE/IFIP Dependable Systems and Networks
(DSN) (2014), pp. 192–203.

[27] Kharraz, A., Robertson, W., Balzarotti, D., Bilge, L., and Kirda, E. Cutting
the gordian knot: A look under the hood of ransomware attacks. In Proceed-
ing of 12th International Conference of Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA) (2015), pp. 3–24.

[28] Kharraz, A., Robertson, W., and Kirda, E. Surveylance: Automatically de-
tecting online survey scams. In Proceeding of IEEE Symposium on Security and
Privacy (S&P) (2018), pp. 70–86.

[29] Kolodenker, E., Koch, W., Stringhini, G., and Egele, M. Paybreak: Defense
against cryptographic ransomware. In Proceeding of ACM on Asia Computer and
Communications Security (Asia CCS) (2017), pp. 599–611.

[30] Konoth, R. K., Vineti, E., Moonsamy, V., Lindorfer, M., Kruegel, C., Bos, H.,
and Vigna, G. Minesweeper: An in-depth look into drive-by cryptocurrency
mining and its defense. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (2018), ACM, pp. 1714–1730.

[31] Kotzias, P., Bilge, L., and Caballero, J. Measuring pup prevalence and pup
distribution through pay-per-install services. In Proceeding of 25th USENIX
Security Symposium (2016).

[32] Kührer, M., Rossow, C., and Holz, T. Paint it black: Evaluating the effectiveness
of malware blacklists. In Proceeding of 17th International Symposium on Research
in Attacks, Intrusions and Defenses (RAID) (2014), pp. 1–21.

[33] Kumar, D., Ma, Z., Durumeric, Z., Mirian, A., Mason, J., Halderman, J. A., and
Bailey, M. Security challenges in an increasingly tangled web. In Proceedings of
the 26th International Conference on World Wide Web (2017), pp. 677–684.

[34] Kwon, B. J., Mondal, J., Jang, J., Bilge, L., and Dumitras, T. The dropper
effect: Insights into malware distribution with downloader graph analytics. In
Proceeding of 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS) (2015), pp. 1118–1129.

[35] Li, Z., Zhang, K., Xie, Y., Yu, F., andWang, X. Knowing your enemy: understand-
ing and detecting malicious web advertising. In Proceedinf of 2012 ACM SIGSAC
conference Computer and Communications Security (CCS) (2012), pp. 674–686.

[36] Lindsey O’Donnell. Cryptojacking attack found on los angeles times web-
site. https://threatpost.com/cryptojacking-attack-found-on-los-angeles-times-
website/130041/, 02 2018.

[37] Lindsey O’Donnell. Cryptojacking Campaign Exploits Drupal Bug, Over 400
Websites Attacked. https://threatpost.com/cryptojacking-campaign-exploits-
drupal-bug-over-400-websites-attacked/131733/, 2018.

[38] Liu, C., and Chen, J. C. Malvertising campaign abuses googleâĂŹs dou-
bleclick to deliver cryptocurrency miners. https://blog.trendmicro.com/
trendlabs-security-intelligence/malvertising-campaign-abuses-googles-
doubleclick-to-deliver-cryptocurrency-miners/, 01 2018.

[39] Malwarebytes Inc. A look into the global drive-by cryptocurrency mining
phenomenon . https://go.malwarebytes.com/rs/805-USG-300/images/Drive-by_
Mining_FINAL.pdf, 2017.

[40] Miramirkhani, N., Starov, O., and Nikiforakis, N. Dial one for scam: A
large-scale analysis of technical support scams. In Proceeding of Network and
Distributed System Security Symposium (NDSS) (2017).

[41] Musch, M.,Wressnegger, C., Johns, M., and Rieck, K.Web-based cryptojacking
in the wild. arXiv preprint arXiv:1808.09474 (2018).

[42] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. http://www.
bitcoin.org/bitcoin.pdf, 2009.

[43] Nelms, T., Perdisci, R., Antonakakis, M., and Ahamad, M. Towards measuring
and mitigating social engineering software download attacks. In Proceedings of
25th USENIX Security Symposium (2016).

[44] Newman, L. H. Hack brief: Hackers enlisted tesla’s public cloud to mine cryp-
tocurrency. https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/,
02 2018.

[45] Nolen Scaife, Henry Carter, P. T., and Butler, K. CryptoLock (and Drop It):
Stopping Ransomware Attacks on User Data. In IEEE International Conference on
Distributed Computing Systems (ICDCS) (2016).

[46] Rafael Keramidas. No Coin. https://github.com/keraf/NoCoin/blob/master/src/
js/background.js, 2018.

[47] Rüth, J., Zimmermann, T., Wolsing, K., and Hohlfeld, O. Digging into browser-
based crypto mining. arXiv preprint arXiv:1808.00811 (2018).

[48] scikit-learn. scikit-learn: machine learning in Python. https://github.com/
scikit-learn/scikit-learn, 2018.

[49] Thomas, K., Crespo, J. A. E., Rasti, R., Picod, J.-M., Phillips, C., Decoste, M.-A.,
Sharp, C., Tirelo, F., Tofigh, A., Courteau, M.-A., Ballard, L., Shield, R.,
Jagpal, N., Rajab, M. A., Mavrommatis, P., Provos, N., Bursztein, E., and
McCoy, D. Investigating commercial pay-per-install and the distribution of
unwanted software. In USENIX Security Symposium (2016).

[50] tunghobrens. AntiMiner – No 1 Coin MinerBlock. https://
chrome.google.com/webstore/detail/anti-miner-no-1-coin-mine/
ibhpgkhoicjhklmbhdoeikeggbeejonj?hl=en, 2018.

[51] Tuwiner, J. Bitcoin mining pools. https://www.buybitcoinworldwide.com/
mining/pools/. accessed: 01-29-2019.

[52] Vadrevu, P., Rahbarinia, B., Perdisci, R., Li, K., and Antonakakis, M. Mea-
suring and detecting malware downloads in live network traffic. In Proceeding of
European Symposium on Research in Computer Security (2013), Springer, pp. 556–
573.

[53] Wappalyzer. MinerBlock. https://www.wappalyzer.com/download. accessed:
01-23-2019.

[54] Whaley, B. Toward a general theory of deception. The Journal of Strategic
Studies 5 (1982), 178–192.

[55] World Wide Web Consortium. WebAssembly Specifications. https://
webassembly.github.io/spec/, 2018.

[56] Wyke, J. Zeroaccess botnet – mining and fraud for massive financial
gain. https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/

11

https://github.com/ZeroDot1/CoinBlockerLists
https://en.bitcoin.it/wiki/Stratum_mining_protocol
https://censys.io/
https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt
https://github.com/xd4rker/MinerBlock/blob/master/assets/filters.txt
https://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html
https://da-data.blogspot.com/2014/08/minting-money-with-monero-and-cpu.html
https://www.bleepingcomputer.com/news/security/cryptojackers-found-on-starbucks-wifi-network-github-pirate-streaming-sites/
https://www.bleepingcomputer.com/news/security/cryptojackers-found-on-starbucks-wifi-network-github-pirate-streaming-sites/
https://www.bleepingcomputer.com/news/security/cryptojackers-found-on-starbucks-wifi-network-github-pirate-streaming-sites/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://chrome.google.com/webstore/detail/minerblock/emikbbbebcdfohonlaifafnoanocnebl?hl=en
https://chrome.google.com/webstore/detail/minerblock/emikbbbebcdfohonlaifafnoanocnebl?hl=en
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://arstechnica.com/information-technology/2018/01/now-even-youtube-serves-ads-with-cpu-draining-cryptocurrency-miners/
https://www.fortinet.com/blog/threat-research/cryptojacking-digging-for-your-own-treasure.html
https://www.fortinet.com/blog/threat-research/cryptojacking-digging-for-your-own-treasure.html
https://gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/
https://gwillem.gitlab.io/2017/11/07/cryptojacking-found-on-2496-stores/
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://developer.chrome.com/extensions/devtools
https://developer.chrome.com/extensions/devtools
https://www.producthunt.com/posts/inwemo
https://www.w3.org/TR/2009/WD-workers-20090423/
https://www.w3.org/TR/2009/WD-workers-20090423/
https://blog.malwarebytes.com/cybercrime/2018/02/state-malicious-cryptomining/
https://blog.malwarebytes.com/cybercrime/2018/02/state-malicious-cryptomining/
https://threatpost.com/cryptojacking-attack-found-on-los-angeles-times-website/130041/
https://threatpost.com/cryptojacking-attack-found-on-los-angeles-times-website/130041/
https://threatpost.com/cryptojacking-campaign-exploits-drupal-bug-over-400-websites-attacked/131733/
https://threatpost.com/cryptojacking-campaign-exploits-drupal-bug-over-400-websites-attacked/131733/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://blog.trendmicro.com/trendlabs-security-intelligence/malvertising-campaign-abuses-googles-doubleclick-to-deliver-cryptocurrency-miners/
https://go.malwarebytes.com/rs/805-USG-300/images/Drive-by_Mining_FINAL.pdf
https://go.malwarebytes.com/rs/805-USG-300/images/Drive-by_Mining_FINAL.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://www.wired.com/story/cryptojacking-tesla-amazon-cloud/
https://github.com/keraf/NoCoin/blob/master/src/js/background.js
https://github.com/keraf/NoCoin/blob/master/src/js/background.js
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://chrome.google.com/webstore/detail/anti-miner-no-1-coin-mine/ibhpgkhoicjhklmbhdoeikeggbeejonj?hl=en
https://chrome.google.com/webstore/detail/anti-miner-no-1-coin-mine/ibhpgkhoicjhklmbhdoeikeggbeejonj?hl=en
https://chrome.google.com/webstore/detail/anti-miner-no-1-coin-mine/ibhpgkhoicjhklmbhdoeikeggbeejonj?hl=en
https://www.buybitcoinworldwide.com/mining/pools/
https://www.buybitcoinworldwide.com/mining/pools/
https://www.wappalyzer.com/download
https://webassembly.github.io/spec/
https://webassembly.github.io/spec/
https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/Sophos_ZeroAccess_Botnet.pdf

Sophos_ZeroAccess_Botnet.pdf, 2012.
[57] Zarras, A., Kapravelos, A., Stringhini, G., Holz, T., Kruegel, C., and Vigna,

G. The dark alleys of madison avenue: Understanding malicious advertisements.
In Proceeding of 2014 ACM Internet Measurement Conference (IMC) (2014), pp. 373–
380.

12

https://www.sophos.com/en-us/medialibrary/PDFs/technical%20papers/Sophos_ZeroAccess_Botnet.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cryptojacking Workflow
	2.2 Related Work

	3 Outguard
	3.1 Building Ground Truth
	3.2 Feature Selection
	3.3 Prototype Implementation
	3.4 Evaluation
	3.5 Adversarial Considerations

	4 Real-world Deployment
	4.1 Obtaining User Consent
	4.2 Detection Coverage Evaluation

	5 Characterizing Cryptojacking Websites
	5.1 Website Popularity and Type
	5.2 Website Lifetime

	6 Operational Insights
	6.1 The Prevalence of Cryptojacking Families
	6.2 Campaign Analysis

	7 Discussion and Limitations
	8 Conclusion
	Acknowledgments
	References

