
You’ve Got (a Reset) Mail: A Security Analysis
of Email-Based Password Reset Procedures

Tommaso Innocenti1, Seyed Ali Mirheidari2, Amin Kharraz4, Bruno Crispo2,3,
and Engin Kirda1

1 Northeastern University
360 Huntington Ave, Boston, MA 02115, United States

{innocenti.t,e.kirda}@northeastern.edu
2 University of Trento

via Calepina, 14 - I-38122 Trento, ITA
{seyedali.mirheidari,Bruno.crispo}@unitn.it

3 KU Leuven
Oude Markt 13, 3000 Leuven, Belgium

4 Florida International University
11200 SW 8th St, Miami, FL 33199, United States

ak@cs.fiu.edu

Abstract. The password recovery process is a critical part of a web-
site’s functionality. Many websites that provide online services to their
users also need to solve the problem of allowing their users to reset their
passwords (e.g., if they have forgotten it). A popular, established tech-
nique for allowing a user to recover a lost account is to allow her to
send a reset link to her own account via email. Although it might seem
easy at a first glance, the security requirements of the password recovery
process require web sites to carefully design each step of the process to
be resilient even in the presence of an attack. In this paper, we present
an in-depth security analysis of the email-based recovery mechanisms of
a wide range of web applications. By manually registering accounts and
triggering the password recovery process for each website, we were able
to study the password reset mechanisms of web sites from three different
groups in the Alexa Top 5K (i.e., popular sites, medium popular sites,
low popular sites). In this work, we show that the lack of standards
in the password recovery process plagues many websites with security
weaknesses, and negatively influences the security of the reset process
itself. We also show that concrete password-recovery reset attacks can
be launched against a high percentage of websites that might even lead
to account takeover.

Keywords: Web applications, Account recovery, Password resets

1 Introduction

Web applications have been historically an attractive target for adversaries. They
are often open to the public-facing Internet and are designed to handle critical

2 T. Innocenti et al.

tasks and valuable data [27]. Therefore, any flaws in their identity and account
access management can have a significant impact on the integrity and confiden-
tiality of the protected resources. This paper primarily focuses on the security
of the account recovery process, a set of steps users have to follow to re-gain
access to their accounts. We provide an empirical study on what is missing in
the current implementation of account recovery mechanisms and how some of
the flaws introduce significant risks with consequential impacts.

Account management has never been an easy task for normal users. Reports
show that users, on average, possess 80 accounts [12]. Hence, it is not very sur-
prising if users lose their access to their accounts and generate password recovery
requests from time-to-time [21]. Although modern password managers [25] have
shown to be effective in facilitating account management, the need to have a
well-designed recovery mechanism has not been diminished. Users may need to
update their accounts and change their passwords for many reasons. Conse-
quently, having a robust password recovery is undeniably a critical service to
maintain the security posture of web applications and protect users’ accounts
from unauthorized access.

Despite the importance of password recovery, the necessary details to imple-
ment and enforce the mechanism do not seem to be sufficient. The main source of
guidance is OWASP [26] which mainly focuses on general requirements without
providing specifics on how to implement or assess the security of the procedure.
Consequently, little knowledge is available to web developers on how to create a
secure and usable account recovery process. This lack of guidance has provided
a unique opportunity for adversaries [7,11,8] to steal sensitive information.

Our work is guided by three primary research questions. First, how do web-
sites implement the account recovery process? Second, how prevalent are account
recovery problems? And third, what are the immediate threats of misconfigured
recovery processes? To answer these questions, we built an analysis pipeline
to collect a real-world dataset of the account recovery process in 366 websites
in the Top 5K Alexa list. 5 This dataset includes information about the login
page, password reset request page, and recovery link. We defined eight imple-
mentation controls in account recovery based on OWASP guidelines and ran
a semi-automated experiment to empirically analyze if websites satisfy these
requirements.

Our analysis shows that insecure practices are prevalent. Our measurements
revealed that the account recovery mechanism in 72% of the websites is affected
by at least one implementation weakness. For instance, 147 (40%) of the web-
sites were generating multiple valid tokens, providing an opportunity to issue
unauthorized password reset requests. Among all websites, 163 (45%) did not
send password change request notifications to the account owner, leaving users
with no warning in case of unauthorized password reset. We also found that
82 (22%) websites suffering from login CSRF, where users can be tricked into
performing the password reset and get authenticated as the attacker, allowing
the attacker to observe all user’s interactions with the site. Despite the broad

5 Our data collection infrastructure will be made open source.

A Security Analysis of Email-Based Password Reset Procedures 3

set of sites analyzed, our measurement findings represent a lower bound of the
potential weaknesses in the wild.

Our analysis also shows that OWASP guidelines are only partially deployed
in practice. Since there was no concrete implementation standard for account
recovery, we used the OWASP guidelines as the “metric” to determine the ad-
herence of websites to these basic security recommendations. Our results show
that only 13% of the websites were following the OWASP guidelines. We observed
that 82% of the password reset procedures on the test websites were based on
sending reset links. In most cases, we observed violations of OWASP guidelines.
For instance, 52 websites were sending the tokens via insecure links, 75 websites
had a very long link expiration window (i.e., more than 24 hours). We were able
to use the reset links after 24 hours. We also observed that in 21 websites, the
generated token could be used multiple times. Among other empirical evidence,
our data shows that the security controls in account recovery mechanisms are
almost missing – leaving significant opportunities for abuses.

Finally, our experiments reveal that the weaknesses in the account recovery
process can have consequential impacts on the security posture of the websites.
For instance, we observed that attackers can mislead the remote server to gener-
ate poisoned reset mails during the password reset request. Users can be tricked
to click on the poisoned reset link providing an opportunity for attackers to
launch login CSRF attacks where they can collect the user’s reset token and po-
tentially perform an account takeover. Moreover, it also allows the adversary to
retrieve almost all the activities on the target account (e.g., message exchange,
credit card entry) by misleading the victim to reset an attacker-controlled ac-
count.

While the weaknesses mentioned in this paper may not always result in bla-
tant security vulnerabilities, they are indicators that developers are failing to
follow robust practices, leading to a more fertile environment for adversarial
operations. We provide an empirical look at the security consequences of these
unsavory practices such as login CSRF and header manipulation. We hope that
this work serves to raise awareness about the importance of defining reliable
mechanisms for the account recovery in the web ecosystem. We also hope our
approach will prove useful to the web security community and open the door for
future solutions.

This paper’s contributions are summarized as follows.

– We propose a methodology to identify weakness in email-based password
recovery process.

– We present a measurement of common weaknesses in password recovery
among the Alexa Top 5K.

– We study a set of web-based attack scenarios on email-based password re-
covery, and quantify the prevalence of them among high-profile sites.

The remainder of this paper is structured as follows. In Section 2, we present
the related work. In Section 3, we provide the background information intro-
ducing the OWASP guidelines and the related threat model. In Section 4, we

4 T. Innocenti et al.

explain the adopted methodology and the data collection infrastructure used to
conduct the study. In Section 5, we present our findings.

2 Related Work

The security community has introduced several fallback authentication mecha-
nisms for account recovery, ranging from knowledge-based authentication (e.g.,
security questions) to possession-based authentication (e.g., OAuth, tokens, se-
curity cards, and email verification). In the following, we will discuss works that
primarily focus on the security of account recovery mechanisms.

Password Reset via Email Verification. Although email-based account re-
covery [4] has reached a wide adoption among sites [29], the procedures to de-
ploy the mechanism is not very well-defined [14,13,28,30,3,29]. The motivation
for some of the prior work was to analyze the effectiveness of account recov-
ery emails [2,1,20,15]. The research showed that malformed recovery emails that
do not inform users of the reset link’s validity time, or that do not warn users
about keeping the link confidential may introduce a vulnerability. In a different
approach, Raponi et al. [29] proposed a technique to protect users from service
provider-level attacks. Despite the open-source availability of the solution, the
study is limited in scope and the vulnerabilities covered in the work. In our
work, we investigated eight common weaknesses and attack scenarios based on
OWASP guidelines [26] as described in Section 4.

Password Reset via SMS OTP. Researchers have also performed several se-
curity analyses of the implication of SMS OTP methods in the authentication
process [10,24,33,22,19]. For instance, AUTH-EYE [22] proposed an automated
approach to detect implementation flaws in the authentication modules of a
program. The analysis showed that in 98.5% of the test cases, the applications
violated different security rules in generating (OTP randomness, length) and
verifying the SMS OTP code (e.g., allowed retry attempts and renewal interval).
In a similar study, Mulliner et al. [24] conducted a measurement study of the
SMS OTP security architecture by introducing several weaknesses and attack
scenarios. They demonstrated that intruders could obtain the SMS OTP utiliz-
ing SIM swapping or the wireless interception attacks. Dmitrienkoet et al. [10],
investigated two-factor authentications of high profile Internet service providers
and discovered several weaknesses which could be exploited to circumvent SMS-
based authentication in four larges online banks applications as well as Google.
In a recent study, Zeyu Lei et al. [19] performed a systematic study on mobile
apps’ authentication schemes based on SMS OTP. Their study not only discov-
ered vulnerable mobile apps with hundreds of millions of installations, but also
revealed several flaws in core API implementations of mobile operating systems.

A Security Analysis of Email-Based Password Reset Procedures 5

Password reset request

Password reset

1

2’

2

2”

1*

Reset token

Close active sessions

Invalidate token

Input validationUsername/email

Reset link
Validate token

Password
reset

Login

Update password

Reset mail

Password
reset

Username/email
Host:evil.com

Attacker’s reset link

Attack scenario 1

Attack scenario 2

evil.com

Fig. 1. Password reset flow

3 Background

In this section, we first discuss the OWASP guidelines [26] for resetting user
passwords. Then, we provide information on the attack scenarios that we used
as complementary security checks for our measurement.

3.1 OWASP Guidelines

The main reference that is publicly available for password reset is provided by
OWASP. The guideline divides the password reset process into two parts; (1)
initiating the password reset request, (2) processing the password reset request.
In the following, we briefly describe each step.
Initiating the Password Reset Requests. The first part of the procedure is
to initiate the password reset as presented in Figure 1. For this step, the OWASP
guidelines suggest providing to the users a consistent message for existing and
non-existing accounts with a constant time for each reply. This approach reduces
the risk of classic timing side-channel attacks on password management [5] and
also protect websites from possible user enumeration attacks [6,4]. Malicious web
bots can target the password reset mechanism. To reduce the impact of such ad-
versarial attempts on the password reset, the guidelines suggest the implemen-
tation of a protection mechanism against automated submission as CAPTCHA
or other rate-limiting controls [34]. Moreover, before processing the request, the
received input should be properly sanitized with an input validation alongside
an SQL injection prevention method that will protect the website’s database.
After the input validation, the website first stores the generated reset token in a
database and then includes it in the reset link. Finally, a reset email containing
the reset link is sent to the user.

6 T. Innocenti et al.

Responding to Password Reset Requests. The second part of the procedure
is the actual password reset that starts with the Action 2 of Figure 1 where the
user clicks on the reset-link received and accesses the password reset page. The
guidelines suggest that users should confirm the new password twice – respecting
a consistent password policy with the rest of the web application. The site should
then invalidate the reset token and store the new password following secure
practices (e.g., using a proper hashing function). Finally, the site should inform
the user of the successful password reset with an email that should not include
the new password.

After the successful password reset, the guidelines suggest redirecting the
users to the normal authentication procedure instead of automatically logging
them since this will complicate the session code handling, and could potentially
introduce CSRF vulnerabilities. The last suggestion is to provide the users the
option to close the open sessions of the account or automatically invalidate them
requesting them to provide the newer credentials.

3.2 Attack Scenarios

The attack scenarios presented are derived from the OWASP guidelines [26].
These attacks are directly related with email-based password recovery process
that represent the majority of the recovery methods adopted in the wild. With
the studied attack scenarios, we demonstrated how misconfigurations in the re-
covery process could be used to directly target a website’s users. We first explain
header manipulation issues, and then discuss login CSRF problems.
Header Injection. The first attack scenario starts at the initiation of the pass-
word reset procedure [17,16,18] due to improper processing of the network head-
ers. That is, the attacker sends a poisoned password reset request marked as 1*
in Figure 1 and manipulates the host field in the network header of the requests.
This can mislead the site’s server that, without a proper sanitization, will gen-
erate the reset link using the poisoned field. As a result, the attacker without
needing any interaction with the victim, mislead the websites’ server to send a
poisoned reset mail to the victim. The only information the attacker needs to
initiate the attack is the victim email. This attack thanks to the generation of
the poisoned email by the website’s server will easily bypass victims’ inbox spam
filter. Moreover, since most of the resetlink included in reset mail is hide behind
a button, the poisoned email generated can easily mislead the victim in click the
malicious link(Action 2’) increasing the chance of a successful attack.
Login CSRF. As depicted in Figure 1, a user would choose a new password
in the final step of the password reset process. Since the user is expected to
submit a valid reset link that is confidential, some applications immediately
set an authorization cookie and redirect the user to the dashboard, bypassing
the normal authentication. Skipping the authentication phase occurs in many
applications as they presume that only the valid user would have access to this
concrete reset link. Unfortunately, this assumption creates a security risk. In
login CSRF attacks, an attacker would request a password reset link for its own

A Security Analysis of Email-Based Password Reset Procedures 7

account, and then send this link to the victims(Action 2*), encouraging them to
click on the link to update the password.

The application would then validate the password reset token, and would set
the proper authorization cookie associated with the reset token. This process
is very dangerous since the victims(Action 2”) use the attacker’s authorization
cookies (i.e., the owner of the reset link) to interact with the website. In fact, the
application recognizes the victim as the account owner because of the possession
of the password reset link. As a result, any of the user’s activities in the attacker’s
account (e.g., web search history, exchanged messages, etc.), can later be accessed
by the attacker. Moreover, if the user saves any personally-identifiable or financial
information (e.g., credit card numbers), this information would be accessible to
the attacker as it is saved in an account under the attacker’s control.
Motivating Example. It is critical to evaluate how websites initiate and pro-
cess account recovery requests. Account recovery problems are less well-studied
security issues with significant impact. For instance, springer.com, a well-known
scientific publisher, has multiple issues in initiating the password requests. We
observed that password reset tokens in this website do not expire. OWASP
strictly suggests single-use reset tokens to minimize the risk of account takeover
and the abuse of the reset mechanism. We also observed that users are provided
with no notification about the password recovery requests. The notification al-
lows users to identify unauthorized attempts for hijacking accounts. As other
examples, Seattlenews.com, a very popular news website in the US Northwest
region, and rakuten.co.jp, a known Japanese shopping website all suffer from
similar types of account recovery problems. The examples we discussed here are
among the most popular websites with a significant number of users and web
traffic. Consequently, issues in password recovery can have consequential im-
pacts on the security of users as well as the web application. Our experiments,
discussed at length in Section 5, show that these issues occur frequently. In Sec-
tion 4, we describe eight different classes of weaknesses in the account recovery
mechanism, and incorporate them to evaluate the security of real-world recovery
mechanisms.

4 Methodology

This section introduces our data collection infrastructure, and the methodology
we used to study the security of the password reset procedure in real-world
websites.

4.1 Measurement Setup

The initial step of the measurement is to select websites and form a test corpus.
We selected 900 websites from the Alexa Top 5,000 websites. We divided the
sites into three groups based on their popularity. As presented in Section 5.3,
this site selection enabled us to analyze the behavior of each site group allowing
us to identify how sites with different popularity exhibit similar results.

8 T. Innocenti et al.

Experiment
Coordinator

Input
Domains

Application
Analysis Job

Queue

Account
Creation

and
Metadata
Collection

Test
Harness

Headers
Manipulation

Proxy

Reset Link
Monitor Report

Fig. 2. Data collection infrastructure.

However, we were able to create accounts only on 513 websites since for
some websites, we were not able to provide all the required information during
the account creation process. For instance, some websites did not have a public
login page or required a pre-approval process such as bank account information.
Also, some of the 900 sites required a specific class of data such as a local phone
number or a Social Security Number (SSN). In some cases, the confirmation link
was not received during the account generation process. To measure the security
of the password reset procedure, we created a user account for each site under
test. During our measurements, we observed that some data deduplication was
necessary. That is, institutions such as Google Inc. had several websites with
different Country Code Top-Level Domains (ccTLDs) where the reset link was
redirected to the main domain. For instance, the password reset requests on
google.es or google.it were redirected to google.com. We removed these cases
from our analysis which were 147 websites to avoid identical measurements.
This initial setup allowed us to collect metadata for each site under test such as
the presence of CAPTCHAs. The metadata helped us in the account recovery
process where we could decide how to interact with the target websites. Figure
2 shows the overall data collection pipeline.

4.2 Data Collection Infrastructure

As presented in Figure 2, the data collection infrastructure is coordinated by the
Experiment coordinator that takes as input the filtered domains and performs
test probes using several high-level components: (1) the test harness, (2) the
reset link monitor, and (3) the header manipulation proxy.
Test Harness. is in charge of managing all the account interfaces and communi-
cating with the header manipulation proxy to generate the manipulated account
reset. This component is responsible for reproducing the user’s interaction with
the website. The interaction with the website was done by writing a Python
script based on Selenium Chrome web driver. The crawler uses CSS selectors
to identify the login element in the page and issue the password reset request.
To verify the correct validation of a correct login, a visual check was performed
to make sure that the browsing session works well in practice. Moreover, we note
that 44 sites were using CAPTCHA services in their login page and that 90 sites
require an explicit CAPTCHA verification before initiating the password reset

A Security Analysis of Email-Based Password Reset Procedures 9

request. Since automatic interaction was not possible in these cases, we manually
ran the experiment to find and reset the password.
Header Manipulation Proxy. is in charge of modifying the request gener-
ated by the test harness. The header manipulation proxy modifies the generated
requests from the test harness including markers in two different header types:
Host header and non-Standard Headers. The markers are used to modify the
requests that are subsequently used by the reset link monitor to pinpoint the
creation of a poisoned reset mail from the web applications.
Reset Link Monitor. monitors email accounts corresponding to user accounts
created in the setup step. Received emails are scanned using a combination
of regular expressions and inspection of HTML mail body to extract all links
contained in the message body and check the presence of injected markers. The
extracted links are then filtered using a keyword heuristic to retain password
reset links and discard all others.

4.3 Password Reset Testing Methodology.

Using OWASP guidelines [26] as a benchmark, we derived the following tests to
evaluate the OWASP adherence of the website’s recovery process.
Reset Link Validity Window(TW). The length of time a reset link is valid
after being issued can have security consequences. A long validity window can
introduce opportunity for an attacker to abuse a stolen link. That being said,
there is also an inherent usability trade-off in this mechanism. That is, a too
short validity window makes it difficult to legitimately use a link before it expires.
Since OWASP guidelines only suggest an “appropriate time validity”, we chose
24 hours as a reasonable trade-off between reset link validity window security and
usability. To test the validity window TW for a site s, a fresh link l is requested.
This reset link is then stored for 24 hours before it is used to attempt a password
reset. Effectively, the test determines whether or not TW (s) > 24h.
Multi-Use Reset Links(TU). Another security-relevant property of reset links
is whether the reset links are valid for multiple uses. OWASP strictly suggests a
single use reset link for each reset token. This prevents, for example, an attacker
from gaining access to an email account containing older reset links and reusing
them to perform a password reset without generating new reset link emails. This
test measures whether a site s allows resetting links to be used multiple times,
denoted by TU . First, a reset link l is requested. Then, we attempt to use it to
perform a password reset twice in succession. If the second attempt succeeds,
then s does not invalidate l on first use and so TU (s) > 1.
No Password Change Confirmation(TC). As suggested by OWASP, web-
sites should notify users after a successful password change. These notifications
allow users to recognize when an attacker is attempting an account takeover via
password reset requests. Since these notifications are sent as a password change
confirmation email, we measure this property for each website. The test mea-
sures whether a site s confirms password changes, denoted by TC . To carry out
the test, we first request a reset link l and then use it to perform a password

10 T. Innocenti et al.

reset. Next, the email monitor waits to receive a confirmation email. If one is not
received within 1 hour, we consider the test to have failed, i.e., TC(s) = false.
No Session Invalidation(TI). After a password reset has been performed,
OWASP suggests allowing the users to shutdown all the account’s active ses-
sions. This is a useful practice because if a password reset was requested due
to an account compromise, failing to invalidate existing sessions would allow an
attacker to maintain persistence. Hence, we tested which websites by default do
not close the account’s active session after a password reset. To measure whether
the website s invalidates existing sessions after a password reset (TI), a reset link
l is requested. Then, a fresh session is created by authenticating to s. In a sepa-
rate unauthenticated browser instance, l is used to reset the account’s password.
Then, we check whether u1 is still authenticated to s. If so, then TI(s) = true. To
prove that the site s closes the session u1, we performed a manual verification
interacting with the open session for a maximum of 60 seconds. The manual
verification is necessary due to the heterogeneous behavior of websites where in
some cases a page refresh would invalidate the session and in some others, a
more complex interaction with the site is needed for session invalidation.
Insecure Reset Link(TS). OWASP suggests that all the reset links should
use HTTPS. Otherwise, users run the risk of falling victim to several attacks.
For instance, an attacker could act as a man-in-the-middle and intercept the
new account password. Furthermore, a passive network attacker could sniff the
new account password if HTTPS redirection is not performed and subsequent
requests are transmitted in the clear. This test, which we denote TS , simply
involves checking whether a reset link l for site s uses the HTTPS scheme. If
not, then TS(s) = true.
Multiple Valid Reset Links(TN). If a site receives multiple password re-
set requests, it may issue multiple reset links.6 However, each new reset link
represents another opportunity for leakage and abuse by an attacker. Thus, al-
though not specified in the OWASP guideline [26], from a security perspective,
it is preferable to limit the number of reset links that are valid at any point
in time, ideally to one. This test measures whether a site s allows multiple, si-
multaneously valid reset links; we denote the number of simultaneously valid
links allowed by a site as TN . First, two reset links l1, l2 are requested. Then,
we attempt to use l1 to initiate a password reset. If the reset succeeds, then this
indicates that TN (s) > 1. In particular, it means that s does not invalidate older
links when a new one is issued.
HTTP Header Injection(TH). As suggested by OWASP, websites should
validate the user’s input before processing it. This includes secure handling of
HTTP headers since malicious content injection of various kinds could be re-
flected in reset emails. These vulnerabilities can enable several distinct attacks.
For instance, if a site uses a password reset request’s Host header to generate
reset links, an attacker could explicitly set the Host header when issuing a reset
request to point to an attacker-controlled origin. This would allow the attacker

6 In principle, a site could also refuse to issue a new reset link while prior links are
still valid. In our experiments, we never observed this to occur.

A Security Analysis of Email-Based Password Reset Procedures 11

to phish victims and intercept both the old and new account passwords. Alter-
natively, arbitrary content injection vulnerabilities could be abused to carry out
XSS attacks against victims that receive reset emails.

To test whether a site s is vulnerable to HTTP header injection (TH), we
used our test harness to issue a password reset request, but this time, using
the Headers manipulation proxy, we intercept it, inject unique markers and
then send it to the site s. In particular, we selected a number of standard
and non-standard HTTP headers to inject markers into. These headers include
Host, Origin, Referer, X-Host, X-Forwarded-Host, X-Forwarded-For, X-Forwarded-
Server, Proxy-Host, Destination, True-Client-IP, Client-IP, X-Client-IP, X-Real-IP,
X-Originating-IP, CF-Connecting-IP, X-Original-URL, X-HTTP-DestinationURL, X-
Arbitrary, X-Forwarded-Proto, Proxy, Contact, From, Forwarded, X-Wap-Profile,
and Profile. The email monitor collects the password reset email. Once it is re-
ceived, it is scanned for the presence of an injected marker. If one is found, then
the site is considered to be conditionally vulnerable to HTTP header injection;
that is, TH(s) = true. The reset email is flagged for later manual confirmation.
Login CSRF(TL). Immediate redirection of a user to the authenticated page
after a successful password reset without an intervening re-authentication rep-
resents a potential login CSRF vulnerability. For this reason, OWASP suggests
redirecting users to the login process instead of automatically logging in users.
In fact, by targeting a vulnerable site, an attacker could send a password reset
email to a victim for an attacker-controlled account. If the victim is tricked into
performing the password reset, she will be authenticated as the attacker, allow-
ing the attacker to observe all of the victim’s interactions with the site. To test
for the presence of a login CSRF vulnerability at site s, we request a rest link l
and then use it to perform a password reset. After the password, reset we man-
ually verify if the site si, without requesting the new password, automatically
logs in the user. If so, then TL(s) = true.

4.4 Limitations

Due to the inherent limitations of the proposed approach, the reported findings
and results in this paper should be considered as a lower bound. For instance,
we exclude websites that require entering the social security numbers, corporate
email addresses, or credit card information. Furthermore, in the header manipu-
lation assessment, our crawler tested only fifteen popular HTTP headers, while
the origin server might be still vulnerable to other headers which have not been
tested in our methodology. Since our crawler should send a new request for each
test case, some websites blocked our test accounts after a number of password re-
set attempts. We stopped testing these websites. However, the implementations
of these websites might still be vulnerable.

4.5 Ethical Considerations

We defined a set of security controls in our experiments to make sure that the
measurements will not cause any damage to the sites under analysis. For in-

12 T. Innocenti et al.

stance, we ran a minimum number of password reset requests to limit the amount
of traffic generated by our measurement tools. During our measurements, we
never injected any malicious code in the network traffic, nor tried to access ac-
counts that were not under our control. Since our study measures the actual
presence of weaknesses in real-world websites, we did not publicly disclose the
vulnerable websites and contacted the vulnerable websites directly.

We followed the recommendations proposed by works such as [23,32,31].
We first used an open-source vulnerability disclosure and bug bounty program
database to obtain the sites’ contact[9]. From the database, we were able to
obtain the contact information of 62 vulnerable sites. In addition, we identified
sites that use a broker (e.g., HackerOne or Bugcrowd) as a designed channel
to disclose vulnerabilities. We then manually contacted each site following the
platforms’ processes.

Unfortunately, not all the vulnerable sites we identified were included in the
database. For the remaining 200 sites, we used the WhoisXML API to gather
the sites’ contact associated with the registered domain. Once we obtained all
sites’ contact information, we used these as input for our automated email script
to automatically generate and send a custom email for each site. In the com-
munication, we used a verified mail account, as well as our contact information
and a method to verify our identity. Along with the weakness that afflicted each
site, we included a link to the OWASP guidelines used to measure the process
security.

Of all the contacted sites, we received an acknowledgment from 38 sites
(14.5%). The sites contacted by email showed lower responsiveness compared
to the sites that used a broker. In fact, we received 19 replies out of 243 sites. 8
sites reported the issue to their dev team and another 8 marked our report as
informative. 3 sites fixed the issue that we reported.

All the 19 sites contacted through a broker replied to our report, with 8 of
them marking our report as duplicated. Some of the duplicated reports were
dated as far back as 2014 – indicating that the website lacked a fix. A known
site of video streaming confirmed that they will fix the issue. The remaining
sites acknowledged the issue, but due to restricted bug bounty program scope,
our report was marked as informative without providing any information about
possible future fixes.

5 Security Measurement

In this section, we provide the result of our measurement, and present the secu-
rity implications of our findings.

5.1 Account recovery implementation

Password Recovery Type. Since analyzing email-based recovery processes
are the main focus of this work, the first step is to identify the recovery methods
adopted by the selected websites. The most reliable way to discover the recovery

A Security Analysis of Email-Based Password Reset Procedures 13

Table 1. Recovery types summary

Recovery Type Channel # Sites

Text-Msg SMS 5 (1.4%)

Original Password E-mail 7 (1.9%)
One-time Security Code E-mail 27 (7.4%)
Temporary Password E-mail 25 (6.8%)
Password Reset Link E-mail 302 (82.5%)

Total 366 (100%)

Table 2. Common Weaknesses Statistics

Weakness All Sites

No Change Notification (NCN) 163 (44.5%)
Multiple Valid Tokens (MVT) 147 (40.2%)
No Session Termination (NST) 139 (38.0%)
Login CSRF (LC) 82 (22.4%)
No Expiration (NE) 75 (20.5%)
Insecure Reset Link (IRL) 52 (14.2%)
Multi Use Token (MUT) 21 (5.7%)
Headers Manipulation (HM) 6 (2.0%)

Total 262 (71.6%)

method is to perform a password reset request on each of the selected websites.
This step of the initial filtration, described in Section 4.1, allowed us to remove
websites that do not provide a password recovery mechanism as well as websites
that consisted of multiple domains. The output of the setup is 366 websites
that constitute our study’s site seed. A summary of the password recovery type
discovery is presented in Table 1. Our dataset’s analysis confirms the findings of
[4] that the majority of websites adopt an email-based password recovery pro-
cedure. Moreover, it answers our first research question by defining how many
websites implement the account recovery process. In fact, the email-based recov-
ery type (361 websites) represents 98.6% of the whole recovery types with only
five websites that adopt SMS as the primary recovery method.

5.2 Recovery Procedure Analysis

Since 302 sites (82.5%) used the reset-link as the recovery method, we focused on
the security implementation of the reset tokens included in the reset-link. The re-
set token is a secret code generated by the website, and included in the reset-link.
The token allows opening a temporary session to reset the account’s password.
Due to its central role, the reset token’s security checks play a fundamental part
in ensuring the password reset procedure’s security. Hence, we allocated four
out of six implementation checks to verify its correct implementation and the

14 T. Innocenti et al.

[1-500] [2400-2600] [4800-5000]
Alexa ranking

0

25

50

75

100

125

150

175

200

225

of

 si
te

s
204

89

73

49

22 16

149

65

48

Crawled site
of site with Token vulnerability
of site with Web vulnerability

Fig. 3. Sites distribution in Alexa rank-
ing

New
s

In
te

rn
et

Ser
vic

es

Por
nog

ra
phy

Por
ta

l Site
s

Busin
es

s

Gam
es

Blog
s/

W
iki

Sof
tw

ar
e/

Har
dwar

e

Net
wor

k
Sto

ra
ge

Ente
rta

inm
en

t
0

5

10

15

20

25

30

#
of

si
te

s

27

21

18

13 13

10
9 9 9

8
9

7

5 5

3
2

1
0

2 2

25

20

17

12

8
7

8 8

6 6

Crawled site

of site with Token vulnerability

of site with Web vulnerability

Fig. 4. Top 10 categories

remaining two to verify a correct implementation after password reset (i.e., no
session termination, no change notification). The result of our measurement are
presented in Table 2.

Combining the result of Table 2 with the data of Figure 6 shows that 57.7%
of websites (211 websites out of 366) misimplemented a security check on re-
set token. For the remaining two implementation checks, we found that 54.0%
(198 out of 366 websites) of websites wrongly managed the active sessions after
a password reset, or missed a confirmation email after a successful password
reset. The tests performed show a large diffusion of misimplementation of the
password reset procedure among websites. Moreover, the widespread number of
websites with at least one weakness (i.e., 262 out of 366 – 71.6%) answers the
second research question affirmatively; That is, the missing of a standard clearly
causes a degradation of the password reset procedure’s implementation security
on websites. The diffusion of weaknesses among websites is a clear indicator of a
much-needed strict regulation of this critical procedure urging a practical effort
from websites to the research community to solve this overlooked problem.

5.3 Weakness Analysis

Alexa Ranking. As presented in Figure 3, the percentage of websites affected
by a weakness is, in the first group, 97% (198 sites) of the most popular websites,
97.7% (87 sites) for the second group and, 87.7% (64 sites) for less popular
websites. The result of our measurement shows an homogeneous diffusion of
weaknesses among all three different groups.

Category. The analysis of the website categories reveals that all the categories
have at least 60% of websites that are vulnerable, with six categories that have
at least 89% of the websites that are vulnerable. As presented in Figure 4, from
the composition of the sites’ weaknesses, it is clear that token weaknesses have

A Security Analysis of Email-Based Password Reset Procedures 15

0 100 200 300 400 500
Ranking of sites

0.0

0.2

0.4

0.6

0.8

1.0

C
om

ul
at

iv
e

pr
ob

ab
ili

ty

MVT

NCN

NST

IRL

MUT

NE

LC

2400 2450 2500 2550 2600
Ranking of sites

0.0

0.2

0.4

0.6

0.8

1.0

MVT

NCN

NST

IRL

MUT

NE

LC

4800 4850 4900 4950 5000
Ranking of sites

0.0

0.2

0.4

0.6

0.8

1.0

MVT

NCN

NST

IRL

MUT

NE

LC

Fig. 5. CDF weaknesses comparison

a higher incidence with respect to the web vulnerabilities. Even though some
categories showed a lower percentage in weaknesses, the result obtained shows
how the weaknesses we analyzed affect all the website categories indiscriminately,
reinforcing the conclusion that the security of password reset procedure is an
open and widespread problem.

Weakness Distribution. Figure 5 shows the cumulative distribution of web-
sites that exhibit an implementation weakness. For each weakness measured, we
represent here the distribution of vulnerable sites in all three sites bucket. A
more inclined line shows that a particular weakness affects more popular sites
than less popular sites. As shown in the graph, the majority of the weaknesses
show a similar trend among sites. Further analyzing the distribution of each
bucket of sites, we performed a Mann-Whitney U test and, with a p-value of
0.01, we cannot reject the null hypothesis that all three buckets belongs to the
same distribution. This result suggests a counter-intuitive result; that websites
are affected regardless of their ranking and popularity.

Furthermore, we investigated the diffusion of weaknesses among websites
with the co-occurrence matrix presented in Figure 6. The matrix shows three
weakness clusters: Multiple Valid Token, No Change notification, and No Session
Termination. These clusters suggest that websites that did not pass one of the
security checks have a higher chance of having issues in other security check
implementations. The consequence is that even a single misimplementation could
endanger the security of the reset procedure. However, websites that expose
multiple weaknesses enable the chaining of weaknesses, considerably increasing
the severity of the problems.

5.4 Attack Scenarios

3.2
In this section, we present the result of our attack scenarios investigation.

While our analysis represents a lower bound of vulnerable sites, it still shows
an urgent need for a better password reset procedure implementation. Further-
more, sites should account for every potential attack when designing their re-

16 T. Innocenti et al.

LC NE MVT MUT IRL NST NCN

Login CSRF

No Expiration

Multiple Valid Tokens

Multi Use Token

Insecure Reset Link

No Session Termination

No Change Notification

0 28 56 9 7 39 52

28 0 39 3 10 36 49

56 39 0 19 20 76 90

9 3 19 0 3 14 16

7 10 20 3 0 22 28

39 36 76 14 22 0 104

52 49 90 16 28 104 0
0

20

40

60

80

100

Fig. 6. Co-occurence Matrix

covery procedure to reduce the risk that malicious actors could exploit security
assumptions.

Header Injection. In this experiment, our proxy, in two separate account
reset requests, manipulated Host header as well and fifteen standard and Non-
Standard HTTP headers through injecting specific values. We later investigated
all reset email contents and reset links for the presence of a marker (manipulated
headers value). Our crawler discovered 6 out of 366 (2.0%) websites echoed our
injected marker either in reset link, or inside email contents. The details of each
category are described below.
Host Header Injection. In the first step, our proxy replaced the Host header
in all password reset requests with a specific marker. By investigating all reset
emails, our crawler discovered 3 out of 366 (1.0%) websites to be vulnerable, i.e,
the generated password reset link pointed to the injected domain name by the
crawler. It is noteworthy that our crawler did not detect any changes in the con-
tent of the password reset email, which implies Host header manipulation would
only affect reset links. Leveraging this vulnerability enables an attacker to steal
the password reset token and compromise user’s accounts. Our results show that
only 66 out of 366 (18%) websites accepted password reset requests with manipu-

A Security Analysis of Email-Based Password Reset Procedures 17

lated Host header and sent the password reset emails, whereas only 3 were found
to be vulnerable. For the rest of the websites, our crawler recorded three differ-
ent behaviors. 96 websites handled requests properly and redirected our crawler
to custom error pages. 70 websites returned different 400 error codes (mostly
403 Not Found), and 8 websites returned 500 Internal Server Error. For
websites that do not accept password reset requests, it is plausible that a vari-
ety of middle HTTP components (e.g., Load balancer, Web application firewall,
etc.) have blocked requests with manipulated Host header and do not route the
request to the server. Then, the presented result in this section should be con-
sidered as a lower bound because the server can still be vulnerable, but other in
the middle protections avoid the server’s exposure to vulnerability.
Other HTTP Headers Injection. In the final step, our proxy manipulated
the password reset requests by adding fifteen standard and Non-Standard HTTP
headers and discovered 3 out of 366 (1.0%) websites to be vulnerable. Dur-
ing the measurement, 198 websites out of 366 (54%) accepted our poisoned re-
quest showing a lower bouncing rate compared to the host headers poisoning an
older and better documented vulnerability. The lower popularity and documen-
tation of Non-Standard HTTP headers open the door to unexplored weakness as
showed by the result of our measurement. Two of three cases were vulnerable to
X-Forwarded-Host header, and the servers used these header values to create a
password reset link. Obtaining the password reset link would enable the attacker
to steal the password reset token and perform an account take over.

The third site was exploited with manipulation of a different header, namely
x-originating-ip, while the site was vulnerable to altering neither Host nor
X-Forwarded-Host headers. The result of manipulating x-originating-ip was
notable in that the marker we injected in the field was echoed in the contents of
the email. Therefore, it would be possible to inject arbitrary phishing contents in
the password reset email. Another notable observation was specifically observed
in anonymous.com site, which was including not only the password reset link in
the password reset email, but also the IP address of the requester. This IP address
would be set as the value of x-originating-ip header. Interestingly, when we
populated x-originating-ip with our marker, this value was the one which was
shown in the anonymous password reset email. We think this observation could
be justified with assuming the existence of some middle network components or
servers, which are responsible to find the requester’s IP and then append that IP
address to the header, without overwriting the value we set. When the results
are sent to the server, it shows the first value of x-originating-ip, which
had been set by us. These results confirmed our hypothesis that manipulating
Non-Standard headers are an effective variation of header manipulation and can
target password reset processes either by reset link poisoning or email content
manipulation.

Login CSRF. The attack scenario presented in Section 3.2 is a variation of the
well-known Login CSRF(i.e., Auth-CSRF). Login CSRF was first introduced in
2009 [15]. In the attack, an attacker forces the victim to login to the attacker’s

18 T. Innocenti et al.

account by sending a forged authentication request with the attacker’s creden-
tials through the victim’s browser. As described in Section 4.3, after completing
the password reset process, we manually investigated the landing pages to verify
if the browser session is authenticated. In case of an authentication landing page,
the site would be tagged as vulnerable. As a result of our experiments, 82 out
of 366 (22.4%) websites were vulnerable to login CSRF.

6 Conclusions

One of the most security-critical aspects of a website’s functionality is the pass-
word recovery service. It has been long known that malicious actors often target
the password recovery process to hijack a victim’s account (e.g., by guessing
their secret recovery questions). A popular, established technique for allowing a
user to recover a lost account is to allow her to send a reset link to her account
via email. The security requirements of the password recovery process requires
web sites to carefully design each step of the process to be resilient even in the
presence of an attack.

This paper presented a security analysis of the email-based recovery mecha-
nisms of a wide range of web applications from the Alexa Top 5K. We studied
groups of popular, medium popular, and low popular websites, and manually
registered accounts on these websites. Our work shows that the lack of stan-
dards in the password recovery process plagues many websites with security
weaknesses, and also negatively influences the security of the reset process itself.
We also show that concrete password-recovery reset attacks (e.g., login CSRF,
header manipulation) can be launched against a significant number of websites
that might even lead to account takeover. We hope that this paper will pave
the way in highlighting the importance of improving the email-based account
recovery mechanisms in real-world websites.

7 Acknowledgments

We would like to thank anonymous reviewers for reading the paper carefully
and making helpful comments. This work was supported by National Science
Foundation under grant CNS-1703454. This work was also partially supported
by Secure Business Austria.

References

1. Al Maqbali, F., Mitchell, C.J.: Email-based password recovery-risking or rescu-
ing users? In: 2018 International Carnahan Conference on Security Technology
(ICCST). pp. 1–5. IEEE (2018)

2. Al Maqbali, F., Mitchell, C.J.: Web password recovery: A necessary evil? In: Pro-
ceedings of the Future Technologies Conference. pp. 324–341. Springer (2018)

A Security Analysis of Email-Based Password Reset Procedures 19

3. Bonneau, J., Bursztein, E., Caron, I., Jackson, R., Williamson, M.: Secrets, lies,
and account recovery: Lessons from the use of personal knowledge questions at
google. In: Proceedings of the 24th international conference on world wide web.
pp. 141–150 (2015)

4. Bonneau, J., Preibusch, S.: The password thicket: Technical and market failures
in human authentication on the web. In: WEIS (2010)

5. Cao, Y., Chen, Z., Li, S., Wu, S.: Deterministic browser. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. pp.
163–178 (2017)

6. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
A reality today, a challenge tomorrow. In: 2010 IEEE Symposium on Security and
Privacy. pp. 191–206. IEEE (2010)

7. Conikee, C.: Case study : Exploiting a business logic flaw with github’s
forgot password workflow. https://medium.com/@chetan_conikee/case-
study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-
discovered-d4d36ee3dd16 (December 2019)

8. Corporation, T.M.: Cwe-640: Weak password recovery mechanism for forgotten
password. https://cwe.mitre.org/data/definitions/640.html

9. Disclose.io: Open-source tools to help hackers and organizations make the internet
safer, together. https://disclose.io, online; accessed 20 February 2021

10. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.R.: Security analysis of mo-
bile two-factor authentication schemes. Intel Technology Journal 18(4) (2014)

11. Gracey, J.: Hacking github with unicode’s dotless ’i’. https://eng.getwisdom.io/
hacking-github-with-unicode-dotless-i/ (November 2019)

12. Hanamsagar, A., Woo, S.S., Kanich, C., Mirkovic, J.: Leveraging semantic trans-
formation to investigate password habits and their causes. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. pp. 1–12 (2018)

13. Jakobsson, M., Stolterman, E., Wetzel, S., Yang, L.: Love and authentication. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
pp. 197–200 (2008)

14. Just, M.: Designing and evaluating challenge-question systems. IEEE Security &
Privacy 2(5), 32–39 (2004)

15. Karlof, C., Tygar, J.D., Wagner, D.A.: Conditioned-safe ceremonies and a user
study of an application to web authentication. In: NDSS (2009)

16. Kettle, J.: Practical http host header attacks. https://www.skeletonscribe.net/
2013/05/practical-http-host-header-attacks.html (May 2013)

17. Kettle, J.: Cracking the lens: targeting http’s hidden attack-surface.
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-
attack-surface (July 2017)

18. Kettle, J.: Collaborator everywhere. https://github.com/PortSwigger/
collaborator-everywhere (May 2018)

19. Lei, Z., Nan, Y., Fratantonio, Y., Bianchi, A.: On the insecurity of sms one-time
password messages against local attackers in modern mobile devices. In: Proceed-
ings of the 2021 Network and Distributed System Security (NDSS) Symposium
(2021)

20. Li, Y., Wang, H., Sun, K.: Email as a master key: Analyzing account recovery in the
wild. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications.
pp. 1646–1654. IEEE (2018)

21. Lovisotto, G., Malik, R., Sluganovic, I., Roeschlin, M., Trueman, P., Martinovic,
I.: Mobile biometrics in financial services: A five factor framework. University of
Oxford, Oxford, UK (2017)

https://medium.com/@chetan_conikee/case-study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-discovered-d4d36ee3dd16
https://medium.com/@chetan_conikee/case-study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-discovered-d4d36ee3dd16
https://medium.com/@chetan_conikee/case-study-exploiting-a-business-logic-flaw-with-githubs-forgot-password-workflow-discovered-d4d36ee3dd16
https://cwe.mitre.org/data/definitions/640.html
https://disclose.io
https://eng.getwisdom.io/hacking-github-with-unicode-dotless-i/
https://eng.getwisdom.io/hacking-github-with-unicode-dotless-i/
https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html
https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-attack-surface
https://portswigger.net/research/cracking-the-lens-targeting-https-hidden-attack-surface
https://github.com/PortSwigger/collaborator-everywhere
https://github.com/PortSwigger/collaborator-everywhere

20 T. Innocenti et al.

22. Ma, S., Feng, R., Li, J., Liu, Y., Nepal, S., Bertino, E., Deng, R.H., Ma, Z., Jha,
S.: An empirical study of sms one-time password authentication in android apps.
In: Proceedings of the 35th Annual Computer Security Applications Conference.
pp. 339–354 (2019)

23. Mirheidari, S.A., Arshad, S., Onarlioglu, K., Crispo, B., Kirda, E., Robertson,
W.: Cached and confused: Web cache deception in the wild. In: 29th {USENIX}
Security Symposium ({USENIX} Security 20). pp. 665–682 (2020)

24. Mulliner, C., Borgaonkar, R., Stewin, P., Seifert, J.P.: Sms-based one-time pass-
words: attacks and defense. In: International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment. pp. 150–159. Springer (2013)

25. Oesch, S., Ruoti, S.: That was then, this is now: A security evaluation of password
generation, storage, and autofill in browser-based password managers. In: USENIX
Security Symposium (2020)

26. OWASP: Forgot password cheat sheet, https://cheatsheetseries.owasp.org/
cheatsheets/ForgotPasswordCheatSheet.html

27. Preibusch, S., Bonneau, J.: The password game: negative externalities from weak
password practices. In: International Conference on Decision and Game Theory for
Security. pp. 192–207. Springer (2010)

28. Rabkin, A.: Personal knowledge questions for fallback authentication: Security
questions in the era of facebook. In: Proceedings of the 4th symposium on Us-
able privacy and security. pp. 13–23 (2008)

29. Raponi, S., Di Pietro, R.: A longitudinal study on web-sites password management
(in) security: Evidence and remedies. IEEE Access 8, 52075–52090 (2020)

30. Schechter, S., Brush, A.B., Egelman, S.: It’s no secret. measuring the security and
reliability of authentication via “secret” questions. In: 2009 30th IEEE Symposium
on Security and Privacy. pp. 375–390. IEEE (2009)

31. Stock, B., Pellegrino, G., Li, F., Backes, M., Rossow, C.: Didn’t You Hear Me? -
Towards More Successful Web Vulnerability Notifications. In: Proceedings of the
2018 Network and Distributed System Security (NDSS) Symposium (2018)

32. Stock, B., Pellegrino, G., Rossow, C., Johns, M., Backes, M.: Hey, you have a
problem: On the feasibility of large-scale web vulnerability notification. In: 25th
{USENIX} Security Symposium ({USENIX} Security 16). pp. 1015–1032 (2016)

33. Yoo, C., Kang, B.T., Kim, H.K.: Case study of the vulnerability of otp implemented
in internet banking systems of south korea. Multimedia Tools and Applications
74(10), 3289–3303 (2015)

34. Zhang, Y., Gao, H., Pei, G., Luo, S., Chang, G., Cheng, N.: A survey
of research on captcha designing and breaking techniques. In: 2019 18th
IEEE International Conference On Trust, Security And Privacy In Com-
puting And Communications/13th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE). pp. 75–84 (2019).
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00020

https://cheatsheetseries.owasp.org/cheatsheets/ForgotPasswordCheatSheet.html
https://cheatsheetseries.owasp.org/cheatsheets/ForgotPasswordCheatSheet.html
https://doi.org/10.1109/TrustCom/BigDataSE.2019.00020

	You've Got (a Reset) Mail: A Security Analysis of Email-Based Password Reset Procedures

